194 research outputs found

    Dipole lasing phase transitions in media with singularities in polarizabilities

    Get PDF
    We show that a divergence in the optical polarizability of a heterogeneous medium with nonlinear amplification and a strong dipole-dipole interaction between particles can lead to a phase transition, for which the dipole momentum of the particles or the dipole radiation rate can be taken as order parameters. The "dipole laser" (Phys. Rev. A 71, 063812 (2005)) can be used both as a simple example of such a second-order phase transition and to provide a recipe for its analysis. We show that similar phase transitions may be possible for a nanoparticle on the surface of an optically active medium and at the "Clausius-Mossotti" catastrophe in a bulk heterogeneous medium

    Conditional quantum logic using two atomic qubits

    Full text link
    In this paper we propose and analyze a feasible scheme where the detection of a single scattered photon from two trapped atoms or ions performs a conditional unitary operation on two qubits. As examples we consider the preparation of all four Bell states, the reverse operation that is a Bell measurement, and a CNOT gate. We study the effect of atomic motion and multiple scattering, by evaluating Bell inequalities violations, and by calculating the CNOT gate fidelity.Comment: 23 pages, 8 figures in 11 file

    Dipole Response of Spaser on an External Optical Wave

    Full text link
    We find the conditions upon the amplitude and frequency of an external electromagnetic field at which the dipole moment of a Bergman-Stockman spaser oscillates in antiphase with the field. For these values of the amplitude and frequency the losses in metal nanoparticles is exactly compensated of by gain. This shows that spasers may be used as inclusions in designing lossless metamaterials

    Dipole nanolaser

    Get PDF
    A "dipole" laser is proposed consisting of a nanoparticle and a two-level system with population inversion. If the threshold conditions are fulfilled, the dipole interaction between the two-level system and the nanoparticle leads to coherent oscillations in the polarization of the particles, even in the absence of an external electromagnetic field. The emitted radiation has a dipolar distribution. It does not need an optical cavity, and has a very small volume, 0.1 mu m(3), which can be important for applications in microelectronics. Estimates of the threshold conditions are carried out for a dipole laser composed of a quantum dot and a silver nanoparticle

    The influence of co additive on the sintering, mechanical properties, cytocompatibility, and digital light processing based stereolithography of 3y-tzp-5al2 o3 ceramics

    Get PDF
    Nanocrystalline 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) ceramic powder containing 5 wt. % Al2 O3 with 64 m2 /g specific area was synthesized through precipitation method. The developed materials and technology could be the basis for 3D manufacturing of bioceramic implants for medicin

    The influence of co additive on the sintering, mechanical properties, cytocompatibility, and digital light processing based stereolithography of 3Y-TZP-5Al₂O₃ ceramics

    Get PDF
    Nanocrystalline 3 mol% yttria-tetragonal zirconia polycrystal (3Y-TZP) ceramic powder containing 5 wt. % Al₂O₃ with 64 m²/g specific area was synthesized through precipitation method. Diferent amounts of Co (0-3 mol%) were introduced into synthesized powders, and ceramic materials were obtained by heat treatment in the air for 2 h at 1350-1550 °

    Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects

    Get PDF
    We study emission of photoelectrons from plasmonic nanoparticles into surrounding matrix. We consider two mechanisms of the photoelectric effect from nanoparticles - surface and volume ones, and use models of these two effects which allow us to obtain analytical results for the photoelectron emission rates from nanoparticle. Calculations have been done for the step potential at surface of spherical nanoparticle, and the simple model for the hot electron cooling have been used. We highlight the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary in the surface mechanism, which leads to substantial (by 5 times) increase of photoelectron emission rate from nanoparticle compared to the case when such discontinuity is absent. For plasmonic nanoparticle, a comparison of two mechanisms of the photoeffect was done for the first time and showed that surface photoeffect, at least, does not concede the volume one, which agrees with results for the flat metal surface first formulated by Tamm and Schubin in their pioneering development of quantum-mechanical theory of photoeffect in 1931. In accordance with our calculations, this predominance of the surface effect is a result of effective cooling of hot carriers, during their propagation from volume of the nanoparticle to its surface in the scenario of the volume mechanism. Taking into account both mechanisms is essential in development of devices based on the photoelectric effect and in usage of hot electrons from plasmonic nanoantenna.Comment: 13 pages, 10 figures, 61 reference

    Photon polarisation entanglement from distant dipole sources

    Full text link
    It is commonly believed that photon polarisation entanglement can only be obtained via pair creation within the same source or via postselective measurements on photons that overlapped within their coherence time inside a linear optics setup. In contrast to this, we show here that polarisation entanglement can also be produced by distant single photon sources in free space and without the photons ever having to meet, if the detection of a photon does not reveal its origin -- the which way information. In the case of two sources, the entanglement arises under the condition of two emissions in certain spatial directions and leaves the dipoles in a maximally entangled state.Comment: 7 pages, 2 figures, revised version, accepted for publication in J. Phys.

    Survival of Chondrocytes in Rabbit Septal Cartilage After Electromechanical Reshaping

    Get PDF
    Electromechanical reshaping (EMR) has been recently described as an alternative method for reshaping facial cartilage without the need for incisions or sutures. This study focuses on determining the short- and long-term viability of chondrocytes following EMR in cartilage grafts maintained in tissue culture. Flat rabbit nasal septal cartilage specimens were bent into semi-cylindrical shapes by an aluminum jig while a constant electric voltage was applied across the concave and convex surfaces. After EMR, specimens were maintained in culture media for 64 days. Over this time period, specimens were serially biopsied and then stained with a fluorescent live–dead assay system and imaged using laser scanning confocal microscopy. In addition, the fraction of viable chondrocytes was measured, correlated with voltage, voltage application time, electric field configuration, and examined serially. The fraction of viable chondrocytes decreased with voltage and application time. High local electric field intensity and proximity to the positive electrode also focally reduced chondrocyte viability. The density of viable chondrocytes decreased over time and reached a steady state after 2–4 weeks. Viable cells were concentrated within the central region of the specimen. Approximately 20% of original chondrocytes remained viable after reshaping with optimal voltage and application time parameters and compared favorably with conventional surgical shape change techniques such as morselization

    Optimizing the fast Rydberg quantum gate

    Get PDF
    The fast phase gate scheme, in which the qubits are atoms confined in sites of an optical lattice, and gate operations are mediated by excitation of Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000). A potential source of decoherence in this system derives from motional heating, which occurs if the ground and Rydberg states of the atom move in different optical lattice potentials. We propose to minimize this effect by choosing the lattice photon frequency \omega so that the ground and Rydberg states have the same frequency-dependent polarizability \alpha(omega). The results are presented for the case of Rb.Comment: 5 pages, submitted to PR
    corecore