853 research outputs found

    Long wavelength structural anomalies in jammed systems

    Get PDF
    The structural properties of static, jammed packings of monodisperse spheres in the vicinity of the jamming transition are investigated using large-scale computer simulations. At small wavenumber kk, we argue that the anomalous behavior in the static structure factor, S(k)kS(k) \sim k, is consequential of an excess of low-frequency, collective excitations seen in the vibrational spectrum. This anomalous feature becomes more pronounced closest to the jamming transition, such that S(0)0S(0) \to 0 at the transition point. We introduce an appropriate dispersion relation that accounts for these phenomena that leads us to relate these structural features to characteristic length scales associated with the low-frequency vibrational modes of these systems. When the particles are frictional, this anomalous behavior is suppressed providing yet more evidence that jamming transitions of frictional spheres lie at lower packing fractions that that for frictionless spheres. These results suggest that the mechanical properties of jammed and glassy media may therefore be inferred from measurements of both the static and dynamical structure factors.Comment: 8 pages, 6 figure captions. Completely revised version to appear in Phys. Rev.

    Association between urinary sodium, creatinine, albumin, and long term survival in chronic kidney disease

    Get PDF
    Dietary sodium intake is associated with hypertension and cardiovascular risk in the general population. In patients with chronic kidney disease, sodium intake has been associated with progressive renal disease, but not independently of proteinuria. We studied the relationship between urinary sodium excretion and urinary sodium:creatinine ratio and mortality or requirement for renal replacement therapy in chronic kidney disease. Adults attending a renal clinic who had at least one 24-hour urinary sodium measurement were identified. 24-hour urinary sodium measures were collected and urinary sodium:creatinine ratio calculated. Time to renal replacement therapy or death was recorded. 423 patients were identified with mean estimated glomerular filtration rate of 48ml/min/1.73m<sup>2</sup>. 90 patients required renal replacement therapy and 102 patients died. Mean slope decline in estimated glomerular filtration rate was -2.8ml/min/1.73m<sup>2</sup>/year. Median follow-up was 8.5 years. Patients who died or required renal replacement therapy had significantly higher urinary sodium excretion and urinary sodium:creatinine but the association with these parameters and poor outcome was not independent of renal function, age and albuminuria. When stratified by albuminuria, urinary sodium:creatinine was a significant cumulative additional risk for mortality, even in patients with low level albuminuria. There was no association between low urinary sodium and risk, as observed in some studies. This study demonstrates an association between urinary sodium excretion and mortality in chronic kidney disease, with a cumulative relationship between sodium excretion, albuminuria and reduced survival. These data support reducing dietary sodium intake in chronic kidney disease but further study is required to determine the target sodium intake

    Charge Oscillations in Debye-Hueckel Theory

    Full text link
    The recent generalized Debye-Hueckel (GDH) theory is applied to the calculation of the charge-charge correlation function G_{ZZ}(r). The resulting expression satisfies both (i) the charge neutrality condition and (ii) the Stillinger-Lovett second-moment condition for all T and rho_N, the overall ion density, and (iii) exhibits charge oscillations for densities above a "Kirkwood line" in the (rho_N,T) plane. This corrects the normally assumed DH correlations, and, when combined with the GDH analysis of the density correlations, leaves the GDH theory as the only complete description of ionic correlation functions, as judged by (i)-(iii), (iv) exact low-density (rho_N,T) variation, and (v) reasonable behavior near criticality.Comment: 6 pages, EuroPhys.sty (now available on archive), 1 eps figur

    Description beyond the mean field approximation of an electrolyte confined between two planar metallic electrodes

    Full text link
    We study an electrolyte confined in a slab of width WW composed of two grounded metallic parallel electrodes. We develop a description of this system in a low coupling regime beyond the mean field (Poisson--Boltzmann) approximation. There are two ways to model the metallic boundaries: as ideal conductors in which the electric potential is zero and it does not fluctuate, or as good conductors in which the average electric potential is zero but the thermal fluctuations of the potential are not zero. This latter model is more realistic. For the ideal conductor model we find that the disjoining pressure is positive behaves as 1/W31/W^3 for large separations with a prefactor that is universal, i.e. independent of the microscopic constitution of the system. For the good conductor boundaries the disjoining pressure is negative and it has an exponential decay for large WW. We also compute the density and electric potential profiles inside the electrolyte. These are the same in both models. If the electrolyte is charge asymmetric we find that the system is not locally neutral and that a non-zero potential difference builds up between any electrode and the interior of the system although both electrodes are grounded.Comment: 16 pages, 5 figures, added a new appendix B and a discussion on ideal conductors vs. good conductor

    Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls

    Get PDF
    We formulate a straightforward scheme of statistical mechanics for inhomogeneous systems that includes the virial series in powers of the activity for the grand free energy and density distributions. There, cluster integrals formulated for inhomogeneous systems play a main role. We center on second order terms that were analyzed in the case of hard-wall confinement, focusing in planar, spherical and cylindrical walls. Further analysis was devoted to the Lennard-Jones system and its generalization the 2k-k potential. For this interaction potentials the second cluster integral was evaluated analytically. We obtained the fluid-substrate surface tension at second order for the planar, spherical and cylindrical confinement. Spherical and cylindrical cases were analyzed using a series expansion in the radius including higher order terms. We detected a lnR1/R2\ln R^{-1}/R^{2} dependence of the surface tension for the standard Lennard-Jones system confined by spherical and cylindrical walls, no matter if particles are inside or outside of the hard-walls. The analysis was extended to bending and Gaussian curvatures, where exact expressions were also obtained.Comment: 15 pages, 6 figure

    General Non-equilibrium Theory of Colloid Dynamics

    Full text link
    A non-equilibrium extension of Onsager's canonical theory of thermal fluctuations is employed to derive a self-consistent theory for the description of the statistical properties of the instantaneous local concentration profile n(r,t) of a colloidal liquid in terms of the coupled time evolution equations of its mean value n(r,t) and of the covariance {\sigma}(r,r';t) \equiv of its fluctuations {\delta}n(r, t) = n(r, t) - n(r, t). These two coarse-grained equations involve a local mobility function b(r, t) which, in its turn, is written in terms of the memory function of the two-time correlation function C(r, r' ; t, t') \equiv <{\delta}n(r, t){\delta}n(r',t')>. For given effective interactions between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and covariance n^0(r) and {\sigma}^0(r,r') towards its equilibrium state characterized by the equilibrium local concentration profile n^(eq)(r) and equilibrium covariance {\sigma}^(eq)(r,r'). This theory also provides a general theoretical framework to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of spatial heterogeneities

    The properties of fully flexible Lennard-Jones chains in the solid phase: Wertheim theory and simulation

    Full text link
    NpT ensemble Monte Carlo simulations were performed for fully flexible Lennard-Jones chains in the solid phase. The bond length between monomers within the chains is fixed to L=σL=\sigma and the molecule is free to adopt any configuration. The solid structure of fully flexible chains is obtained by randomly locating the bonds of the chain within a face centered cubic close packed arrangement of atoms. For fully flexible chains it is believed that the stable solid phase is disordered. Such a solid is considered in this work. Computer simulations were performed for chains with m=3,4m=3, 4 and 5 monomer units, and results were obtained for the equation of state and internal energy of the chains. An extension of Wertheim's TPT1 to the solid phase of Lennard-Jones chains (C.Vega, F.J.Blas and A.Galindo, J.Chem.Phys.,{\bf 116},7645,2002) has been proposed recently. The simulation results of this work provide a check on the performance of this theory. It is found that Wertheim's TPT1 successfully predicts the equation of state and internal energies of fully flexible LJ chains in the solid phase. Finally, a rigid LJ chain in a linear configuration has been considered. Computer simulations were also performed for the rigid chain in an ordered solid structure. It is found that fully flexible and linear rigid chains present quite different equations of state and different thermodynamic properties in the solid phase.Comment: PrEprint of the paper published in Molecular Physics volume 101, pp. 2241-2255 (2003

    Dimensional crossover of a boson gas in multilayers

    Full text link
    We obtain the thermodynamic properties for a non-interacting Bose gas constrained on multilayers modeled by a periodic Kronig-Penney delta potential in one direction and allowed to be free in the other two directions. We report Bose-Einstein condensation (BEC) critical temperatures, chemical potential, internal energy, specific heat, and entropy for different values of a dimensionless impenetrability P0P\geqslant 0 between layers. The BEC critical temperature TcT_{c} coincides with the ideal gas BEC critical temperature T0T_{0} when P=0P=0 and rapidly goes to zero as PP increases to infinity for any finite interlayer separation. The specific heat CVC_{V} \textit{vs} TT for finite PP and plane separation aa exhibits one minimum and one or two maxima in addition to the BEC, for temperatures larger than TcT_{c} which highlights the effects due to particle confinement. Then we discuss a distinctive dimensional crossover of the system through the specific heat behavior driven by the magnitude of PP. For T<TcT<T_{c} the crossover is revealed by the change in the slope of logCV(T)\log C_{V}(T) and when T>TcT>T_{c}, it is evidenced by a broad minimum in CV(T)C_{V}(T).Comment: Ten pages, nine figure

    Networked urban governance: a socio-structural analysis of transport strategies in London and New York

    Get PDF
    This paper investigates urban governance empirically by applying social network analysis methods to data gathered through structured interviews in London and New York. We explore how decisions are made in complex institutional environments inhabited by various types of actors. Owing to the time-consuming data collection and treatment processes, the research zooms in on transport. The comparative approach enabled the detection of different structural features in the governance networks shaping transport strategies in both cities. The perceived relative power, influence, dependence and/or affinity between the actors involved is discussed based on network attributes. The evidence suggests that transport governance in London is more centralised (and, arguably, more technocratic and integrated), in the sense that a few prestigious entities are clearly more prominent. In New York the institutional environment is typified by many checks and balances (and, arguably, more democratic and fragmented), where central actors are less obvious
    corecore