2,571 research outputs found

    A Variational Approach to the Spinless Relativistic Coulomb Problem

    Full text link
    By application of a straightforward variational procedure we derive a simple, analytic upper bound on the ground-state energy eigenvalue of a semirelativistic Hamiltonian for (one or two) spinless particles which experience some Coulomb-type interaction.Comment: 7 pages, HEPHY-PUB 606/9

    High-resolution characterization of the diffusion of light chemical elements in metallic components by scanning microwave microscopy

    Get PDF
    International audienceAn original sub-surface, high spatial resolution tomographic technique based on scanning microwave microscopy (SMM) is used to visualize in-depth materials with different chemical compositions. A significant phase difference in SMM between aluminum and chromium buried patterns has been observed. Moreover this technique was used to characterize a solid solution of a light chemical element (oxygen) in a metal lattice (zirconium). The large solubility of the oxygen in zirconium leads to modifications of the properties of the solid solution that can be measured by the phase shift signal in the SMM technique. The signal obtained in cross-section of an oxidized Zr sample shows the excellent agreement between phase shift profiles measured at different depths. Such a profile can reveal the length of diffusion of the oxygen in zirconium under the surface. The comparison with the oxygen concentration measured by nuclear reaction analysis shows excellent agreement in terms of length of diffusion and spatial distribution of the oxygen. A rapid calibration shows a linear dependence between the phase shift and the oxygen concentration. The SMM method opens up new possibilities for indirect measurements of the oxygen concentration dissolved in the metal lattic

    The model of dynamo with small number of modes and magnetic activity of T Tauri stars

    Full text link
    The model that describes operation of dynamo in fully convective stars is presented. It is based on representation of stellar magnetic field as a superposition of finite number of poloidal and toroidal free damping modes. In the frame of adopted low of stellar differential rotation we estimated minimal value of dynamo number D, starting from which generation of cyclic magnetic field in stars without radiative core is possible. We also derived expression for period of the cycle. It was found that dynamo cycles of fully convective stars and stars with thin convective envelopes differ in a qualitative way: 1) distribution of spots over latitude during the cycle is different in these stars; 2) the model predicts that spot formation in fully convective stars should be strongly suppressed at some phases of the cycle. We have analyzed historical lightcurve of WTTS star V410 Tau and found that long term activity of the star is not periodic process. Rather one can speak about quasi cyclic activity with characteristic time of 4\sim 4 yr and chaotic component over imposed. We concluded also that redistribution of cool spots over longitude is the reason of long term variations of V410 Tau brightness. It means that one can not compare directly results of photometric observations with predictions of our axially symmetric (for simplicity) model which allows to investigate time evolution of spot's distribution over latitude. We then discuss what kind of observations and in which way could be used to check predictions of the dynamo theory.Comment: 18 pages, 5 figures, accepted to Astron. Let

    The LBT Panoramic View on the Recent Star-Formation Activity in IC2574

    Full text link
    We present deep imaging of the star-forming dwarf galaxy IC2574 in the M81 group taken with the Large Binocular Telescope in order to study in detail the recent star-formation history of this galaxy and to constrain the stellar feedback on its HI gas. We identify the star-forming areas in the galaxy by removing a smooth disk component from the optical images. We construct pixel-by-pixel maps of stellar age and stellar mass surface density in these regions by comparing their observed colors with simple stellar populations synthesized with STARBURST99. We find that an older burst occurred about 100 Myr ago within the inner 4 kpc and that a younger burst happened in the last 10 Myr mostly at galactocentric radii between 4 and 8 kpc. We analyze the stellar populations residing in the known HI holes of IC2574. Our results indicate that, even at the remarkable photometric depth of the LBT data, there is no clear one-to-one association between the observed HI holes and the most recent bursts of star formation in IC2574. The stellar populations formed during the younger burst are usually located at the periphery of the HI holes and are seen to be younger than the holes dynamical age. The kinetic energy of the holes expansion is found to be on average 10% of the total stellar energy released by the stellar winds and supernova explosions of the young stellar populations within the holes. With the help of control apertures distributed across the galaxy we estimate that the kinetic energy stored in the HI gas in the form of its local velocity dispersion is about 35% of the total stellar energy.Comment: 16 pages, 14 figures, accepted for publication in Ap

    First astronomical detection of the CF+ ion

    Full text link
    We report the first astronomical detection of the CF+ (fluoromethylidynium) ion obtained by recent observations of its J = 1 - 0 (102.6 GHz), J = 2 - 1 (205.2 GHz), and J = 3 - 2 (307.7 GHz) pure rotational emissions toward the Orion Bar. Our search for CF+, carried out using the IRAM 30m and APEX 12m telescopes, was motivated by recent theoretical models that predict CF+ abundances of a few x E-10 in UV-irradiated molecular regions where C+ is present. The measurements confirm the predictions. They provide support for our current theories of interstellar fluorine chemistry, which suggest that hydrogen fluoride should be ubiquitous in interstellar gas clouds.Comment: 2 pages, 1 figure (uses iaus.sty), to appear in IAU Symposium No. 231, Astrochemistry - Recent Successes and Current Challenges, eds. D. C. Lis, G. A. Blake & E. Herbst (Cambridge Univ. Press

    Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs

    Full text link
    ePix10K is a hybrid pixel detector developed at SLAC for demanding free-electron laser (FEL) applications, providing an ultrahigh dynamic range (245 eV to 88 MeV) through gain auto-ranging. It has three gain modes (high, medium and low) and two auto-ranging modes (high-to-low and medium-to-low). The first ePix10K cameras are built around modules consisting of a sensor flip-chip bonded to 4 ASICs, resulting in 352x384 pixels of 100 μ\mum x 100 μ\mum each. We present results from extensive testing of three ePix10K cameras with FEL beams at LCLS, resulting in a measured noise floor of 245 eV rms, or 67 e^- equivalent noise charge (ENC), and a range of 11000 photons at 8 keV. We demonstrate the linearity of the response in various gain combinations: fixed high, fixed medium, fixed low, auto-ranging high to low, and auto-ranging medium-to-low, while maintaining a low noise (well within the counting statistics), a very low cross-talk, perfect saturation response at fluxes up to 900 times the maximum range, and acquisition rates of up to 480 Hz. Finally, we present examples of high dynamic range x-ray imaging spanning more than 4 orders of magnitude dynamic range (from a single photon to 11000 photons/pixel/pulse at 8 keV). Achieving this high performance with only one auto-ranging switch leads to relatively simple calibration and reconstruction procedures. The low noise levels allow usage with long integration times at non-FEL sources. ePix10K cameras leverage the advantages of hybrid pixel detectors with high production yield and good availability, minimize development complexity through sharing the hardware, software and DAQ development with all other versions of ePix cameras, while providing an upgrade path to 5 kHz, 25 kHz and 100 kHz in three steps over the next few years, matching the LCLS-II requirements.Comment: 9 pages, 5 figure

    Effective descriptions of branes on non-geometric tori

    Get PDF
    We investigate the low-energy effective description of non-geometric compactifications constructed by T-dualizing two or three of the directions of a T^3 with non-vanishing H-flux. Our approach is to introduce a D3-brane in these geometries and to take an appropriate decoupling limit. In the case of two T-dualities, we find at low energies a non-commutative T^2 fibered non-trivially over an S^1. In the UV this theory is still decoupled from gravity, but is dual to a little string theory with flavor. For the case of three T-dualities, we do not find a sensible decoupling limit, casting doubt on this geometry as a low-energy effective notion in critical string theory. However, by studying a topological toy model in this background, we find a non-associative geometry similar to one found by Bouwknegt, Hannabuss, and Mathai.Comment: 22 pages, 4 figures, references adde

    The Orbit and Occultations of KH 15D

    Get PDF
    The unusual flux variations of the pre-main-sequence binary star KH 15D have been attributed to occultations by a circumbinary disk. We test whether or not this theory is compatible with newly available data, including recent radial velocity measurements, CCD photometry over the past decade, and photographic photometry over the past 50 years. We find the model to be successful, after two refinements: a more realistic motion of the occulting feature, and a halo around each star that probably represents scattering by the disk. The occulting feature is exceptionally sharp-edged, raising the possibility that the dust in the disk has settled into a thin layer, and providing a tool for fine-scale mapping of the immediate environment of a T Tauri star. However, the window of opportunity is closing, as the currently visible star may be hidden at all orbital phases by as early as 2008.Comment: To appear in ApJ [16 pages, 13 figures

    Ab Initio Calculation of Crystalline Electric Fields and Kondo Temperatures in Ce-Compounds

    Full text link
    We have calculated the band-ff hybridizations for Cex_xLa1x_{1-x}M3_3 compounds (x=1x=1 and x0x\rightarrow 0; M=Pb, In, Sn, Pd) within the local density approximation and fed this into a non-crossing approximation for the Anderson impurity model applied to both dilute and concentrated limits. Our calculations produce crystalline electric field splittings and Kondo temperatures with trends in good agreement with experiment and demonstrate the need for detailed electronic structure information on hybridization to describe the diverse behaviors of these Ce compounds.Comment: 13 pages(RevTeX), 3 Postscript figure

    Absence of Ground States for a Class of Translation Invariant Models of Non-relativistic QED

    Full text link
    We consider a class of translation invariant models of non-relativistic QED with net charge. Under certain natural assumptions we prove that ground states do not exist in the Fock space
    corecore