74 research outputs found

    Effect of second timed appointments for non-attenders of breast cancer screening in England : a randomised controlled trial

    Get PDF
    BACKGROUND: In England, participation in breast cancer screening has been decreasing in the past 10 years, approaching the national minimum standard of 70%. Interventions aimed at improving participation need to be investigated and put into practice to stop this downward trend. We assessed the effect on participation of sending invitations for breast screening with a timed appointment to women who did not attend their first offered appointment within the NHS Breast Screening Programme (NHSBSP). METHODS: In this open, randomised controlled trial, women in six centres in the NHSBSP in England who were invited for routine breast cancer screening were randomly assigned (1:1) to receive an invitation to a second appointment with fixed date and time (intervention) or an invitation letter with a telephone number to call to book their new screening appointment (control) in the event of non-attendance at the first offered appointment. Randomisation was by SX number, a sequential unique identifier of each woman within the NHSBSP, and at the beginning of the study a coin toss decided whether women with odd or even SX numbers would be allocated to the intervention group. Women aged 50-70 years who did not attend their first offered appointment were eligible for the analysis. The primary endpoint was participation (ie, attendance at breast cancer screening) within 90 days of the date of the first offered appointment; we used Poisson regression to compare the proportion of women who participated in screening in the study groups. All analyses were by intention to treat. This trial is registered with Barts Health, number 009304QM. FINDINGS: We obtained 33 146 records of women invited for breast cancer screening at the six centres between June 2, 2014, and Sept 30, 2015, who did not attend their first offered appointment. 26 054 women were eligible for this analysis (12 807 in the intervention group and 13 247 in the control group). Participation within 90 days of the first offered appointment was significantly higher in the intervention group (2861 [22%] of 12 807) than in the control group (1632 [12%] of 13 247); relative risk of participation 1·81 (95% CI 1·70-1·93; p<0·0001). INTERPRETATION: These findings show that a policy of second appointments with fixed date and time for non-attenders of breast screening is effective in improving participation. This strategy can be easily implemented by the screening sites and, if combined with simple interventions, could further increase participation and ensure an upward shift in the participation trend nationally. Whether the policy should vary by time since last attended screen will have to be considered. FUNDING: National Health Service Cancer Screening Programmes and Department of Health Policy Research Programme

    MesoGraph: automatic profiling of mesothelioma subtypes from histological images

    Get PDF
    Mesothelioma is classified into three histological subtypes, epithelioid, sarcomatoid, and biphasic, according to the relative proportions of epithelioid and sarcomatoid tumor cells present. Current guidelines recommend that the sarcomatoid component of each mesothelioma is quantified, as a higher percentage of sarcomatoid pattern in biphasic mesothelioma shows poorer prognosis. In this work, we develop a dual-task graph neural network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score. Tissue is represented by a cell graph with both cell-level morphological and regional features. We use an external multicentric test set from Mesobank, on which we demonstrate the predictive performance of our model. We additionally validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score

    Malignant Mesothelioma subtyping via sampling driven multiple instance prediction on tissue image and cell morphology data

    Get PDF
    Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposure. It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in which significant components of both of the previous subtypes are present. Early diagnosis and identification of the subtype informs treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, and specifically the recognition of transitional features from routine histology slides has a high level of inter-observer variability. In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothelioma subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks on bags of image patches that allows learning on a wider range of relevant instances compared to max or top-N based MIL approaches. We also investigate augmenting the instance representation to include aggregate cellular morphology features from cell segmentation. The proposed MIL approach enables identification of malignant mesothelial subtypes of specific tissue regions. From this a continuous characterisation of a sample according to predominance of sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by currently used subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associated with different subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores with an AUROC of 0.89 ± 0.05 for this task. The dataset and developed methodology is available for the community at: https://github.com/measty/PINS

    Malignant Mesothelioma subtyping via sampling driven multiple instance prediction on tissue image and cell morphology data

    Get PDF
    Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposure. It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in which significant components of both of the previous subtypes are present. Early diagnosis and identification of the subtype informs treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, and specifically the recognition of transitional features from routine histology slides has a high level of inter-observer variability. In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothelioma subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks on bags of image patches that allows learning on a wider range of relevant instances compared to max or top-N based MIL approaches. We also investigate augmenting the instance representation to include aggregate cellular morphology features from cell segmentation. The proposed MIL approach enables identification of malignant mesothelial subtypes of specific tissue regions. From this a continuous characterisation of a sample according to predominance of sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by currently used subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associated with different subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores with an AUROC of 0.89±0.05 for this task. The dataset and developed methodology is available for the community at: https://github.com/measty/PINS

    MesoGraph: Automatic profiling of mesothelioma subtypes from histological images.

    Get PDF
    Mesothelioma is classified into three histological subtypes, epithelioid, sarcomatoid, and biphasic, according to the relative proportions of epithelioid and sarcomatoid tumor cells present. Current guidelines recommend that the sarcomatoid component of each mesothelioma is quantified, as a higher percentage of sarcomatoid pattern in biphasic mesothelioma shows poorer prognosis. In this work, we develop a dual-task graph neural network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score. Tissue is represented by a cell graph with both cell-level morphological and regional features. We use an external multicentric test set from Mesobank, on which we demonstrate the predictive performance of our model. We additionally validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score

    Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells

    Get PDF
    The antimetabolite mercaptopurine (MP) is widely used to treat childhood acute lymphoblastic leukaemia (ALL). To study the dynamics of MP on the cell cycle, we incubated human T-cell leukaemia cell lines (Molt-4 sensitive and resistant subline and P12 resistant) with 10 μM MP and measured total cell count, cell cycle distribution, percent viable, percent apoptotic, and percent dead cells serially over 72 h. We developed a mathematical model of the cell cycle dynamics after treatment with MP and used it to show that the Molt-4 sensitive controls had a significantly higher rate of cells entering apoptosis (2.7-fold, P<0.00001) relative to the resistant cell lines. Additionally, when treated with MP, the sensitive cell line showed a significant increase in the rate at which cells enter apoptosis compared to its controls (2.4-fold, P<0.00001). Of note, the resistant cell lines had a higher rate of antimetabolite incorporation into the DNA of viable cells (>1.4-fold, P<0.01). Lastly, in contrast to the other cell lines, the Molt-4 resistant subline continued to cycle, though at a rate slower relative to its control, rather than proceed to apoptosis. This led to a larger S-phase block in the Molt-4 resistant cell line, but not a higher rate of cell death. Gene expression of apoptosis, cell cycle, and repair genes were consistent with mechanistic dynamics described by the model. In summary, the mathematical model provides a quantitative assessment to compare the cell cycle effects of MP in cells with varying degrees of MP resistance
    • …
    corecore