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Abstract

Malignant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposure.
It can be broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in which
significant components of both of the previous subtypes are present. Early diagnosis and identification of the subtype
informs treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, and
specifically the recognition of transitional features from routine histology slides has a high level of inter-observer
variability.

In this work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesothelioma
subtyping. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks on
bags of image patches that allows learning on a wider range of relevant instances compared to max or top-N based
MIL approaches. We also investigate augmenting the instance representation to include aggregate cellular morphol-
ogy features from cell segmentation. The proposed MIL approach enables identification of malignant mesothelial
subtypes of specific tissue regions. From this a continuous characterization of a sample according to predominance of
sarcomatoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by cur-
rently used subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associated
with different subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores with
an AUROC of 0.89 + 0.05 for this task. The dataset and developed methodology is available for the community at:
https://github.com/measty/PINS.
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1. Introduction need to detect MM at its early onset when treatment is
Mali Mesotheli MM) ; . more effective. MM is classified into 3 subtypes [4], Ep-
alignant Mesothelioma (MM) is an aggressive can- ;. o1i0:4 (EM), Biphasic (BM) and Sarcomatoid (SM)

cer of the pleural lining, primarily associated with as-
bestos exposure [1]. It has a long latency period from
initial exposure, to eventual carcinogenesis, and is diffi-
cult to diagnose due to its nonspecific clinical manifes-
tations. As a result, diagnosis is usually confirmed in an
advanced stage [2], leading to the 5 year survival rate
being less than 5% [3]. Hence there is an urgent clinical

Mesothelioma, with Biphasic characterised by a mix
of epithelioid and sarcomatoid components, including
Transitional Mesothelioma (TM). Epithelioid mesothe-
lioma are characterised by malignant cells that are cy-
tologically round with varying grading of atypia. Sar-
comatoid mesothelioma cells are generally recognised
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as malignant spindle cells [S]. The Epithelioid subtype
is more common, and is associated with relatively more
favourable outcomes, whereas Biphasic and Sarcoma-
toid are associated with a progressively worse progno-
sis. Recent studies have also shown that the presence
of transitional features of TM, which share intermedi-
ate cytology between epithelioid and spindle cell also
indicate a poorer prognosis [6]. In MM, TM may rep-
resent an aspect of Epithelial Mesenchymal Transition
(EMT), with cells differentiating between EM and SM,
suggesting that MM cases may fall more naturally on
a continuum of characterisation according to the rela-
tive prevalence of EM, SM and TM components. Part
of the motivation for this work is to go beyond the cur-
rent 2021 WHO 3 basic subtypes and move towards a
system whereby we use sub-visual signals on individual
cell level, to specify quantitatively where a MM sample
lies on the EM-SM continuum.

While distinction of these three histological subtypes
of MM is crucial to patient treatment, management and
prognosis, it is challenging to differentiate EM, SM and
BM through visual analysis as they tend to present sim-
ilar features to transitional patterns at some stages.

A number of deep learning methods for analyzing
mesothelioma images have been developed recently.
For example, SpindleMesoNET [7] can separate malig-
nant SM from benign spindle cell mesothelial prolifer-
ations. This method uses region annotations on whole
slide images to train a resnet patch classifier. This dif-
fers from our learning task, as we do not have region
annotations and must rely only on core-level labels.

To address the challenges of assessing stromal in-
vasion in small biopsies, the most accurate indicator
of malignancy, the separation of benign and malignant
mesothelial proliferations has been investigated [8], in
both epithelial and spindle cell mesothelial processes. A
recent approach for survival prediction of MM patients
called MesoNet [9] uses an MIL solver originally de-
veloped for computer vision applications [10]. This has
also been applied to classification of lymph node metas-
tases in [11]. The model uses a resnet50 base followed
by a 1-d convolution to give an instance level score.
A small MLP prediction head on the top and bottom
two instances then provides the bag-level label. Models
based on learning on extremal instances can suffer from
learning on only a small subset of the relevant instances
during training.

These examples demonstrate the successful applica-
tion of machine learning to some prediction tasks on
MM tissue, however automated subtyping of mesothe-
lioma from Hemotoxylin and Eosin (H&E) stained tis-
sue sections remains an open problem that has not been

addressed in the literature.

One of the issues associated with development of
automated computational pathology approaches for
predicting malignant mesothelioma subtypes is that
pathologist-assigned ground-truth labels for these im-
ages are typically available only at the case level. How-
ever, we are often interested in properties of smaller re-
gions of a sample. To address this, tissue images can
be tiled into patches for training of deep learning mod-
els and the case-level labels used as bag labels. Thus,
mesothelioma subtyping can be categorized as a multi-
ple instance learning (MIL) or weak-supervision prob-
lem. This class of problem was first introduced in [12],
and various approaches have since been proposed for
use in such problems.

An attention-inspired pooling method for MIL in-
stance aggregation is proposed in [13].  Another
attention-based MIL approach is introduced in [14].
Here, a dual stream approach is used where the final bag
score is the mean of max instance pooling and an atten-
tion based weighted average of instances attended to by
the max instance. This model is applied to Camelyon-
16 and TCGA lung cancer datasets. Large datasets on
prostate cancer, basal cell carcinoma and breast can-
cer metastases are assembled in [15] and used to train
an MIL model backpropagating only the top instance
per bag. In the IDaRS algorithm proposed in [16], for
each slide the training instances used in epoch ¢ are
the top k ranked instances by prediction score from the
previous epoch ¢ — 1, augmented by a number of ran-
domly selected patches from the slide. This approach
was used to predict the status of molecular pathways
and detect key mutations in colorectal cancer. Of the
approaches detailed in the literature, this is the closest
conceptually to the approach taken in this paper. Our
approach differs in that instead of the union of top N
and a purely random sampling of instances, we instead
sample at each iteration according to the current model
score. By avoiding to use an arbitrary top N cutoff, and
instead stochastically sampling the more positive scor-
ing patches through a probability distribution based on
how highly each patch is scored, our approach can adapt
more closely to the actual distribution of positive in-
stances in each bag, thus making better use of all in-
stances for training.

Building on our previous work [17], here we present a
simple yet effective approach to multiple instance learn-
ing for MM subtype prediction with the following major
contributions:

1. The introduction of a novel MIL-based method
for computational pathology tasks which addresses



shortcomings identified in similar methods regard-
ing robustness to initialization and learning on only
a small number of the relevant instances in the
training data. Instead of learning on some variation
of top N instances, we learn on instances sampled
according to model score. Thus, learning is fo-
cused on the more positive instances but in a more
natural, adaptive and smooth way that does not rely
on an arbitrary, discontinuous cut off to select in-
stances to be used.

2. The collection of a dataset of MM tissue cores la-
belled by subtype, which we make publicly avail-
able for further study by the community. We also
address a prediction task, automated subtyping of
MM tissue, which has not been covered in the lit-
erature to date.

3. The incorporation into the model of patch level
cell morphology statistics derived from analysis of
cell segmentation on the tissue images, as a way
to introduce domain knowledge (specifically, the
knowledge that cells are important histological en-
tities within the tissue) into the model.

2. Data and Preprocessing

The dataset used in this work is a collection of H&E
stained Tissue Micro-arrays (TMAs) of tumor tissue
biopsies collected from St. George’s Hospital. It con-
sists of 4 TMA slides each with an average size of
40,000 x 40,000 pixels scanned using a Hamamatsu
Nanozoomer S360 scanner at 20x (0.4415 microns per
pixel) with a total of 279 cores covering 102 separate
cases (patients). After removal of dropped and severely
damaged/incomplete cores, we are left with 234 cores,
with 148 EM, 61 BM, and 25 SM cores. We perform
Vahadane stain normalisation [18] to minimise system-
atic stain variability between slides and cores. We tile
each core into patches of 224x224 pixels at 20x mag-
nification. Patches consisting of less than 50% tissue,
as determined by a tissue mask created via luminosity
thresholding, were discarded. Only core-level labels are
provided, detailed annotations describing how different
regions of the core contribute to the core-level label are
not available.

3. Problem formulation

As the biphasic subtype is a mix of epithelioid and
sarcomatoid components, the subtyping task can be

modelled as a two class problem, where the three sub-
types act as a crude measure of how much of the pos-
itive class are present. If we can train a model that
will provide instance scores that express how likely each
patch is to be the positive class, we can move towards a
more expressive characterisation of mesothelioma cores
according to the proportion of sarcomatoid component
they contain. As subtype labels are only available at the
core level and not for individual image patches within
each core, we model the subtype prediction task as
a binary Multiple Instance Learning (MIL) problem,
with sarcomatoid as the positive class. Under the MIL
paradigm [12], an example is represented by a bag of in-
stances, and a bag is considered positive if it contains at
least one positive sample. The goal of an MIL predictor
is to use training data consisting of bags with bag level
labels only to predict both bag and instance level labels
in testing. Formally, let B = {xi, ..., x,,} be a bag cor-
responding to a single TMA core in our dataset, where
x; are instances (patches) within the bag. The number
of instances np can vary across bags. Each core, repre-
sented by bag B, is associated with a label Y5 € {0, 1}
in the training dataset. In our formulation, both sar-
comatoid and biphasic cores are taken as positive bags
(Yg = 1), as in both cases a noticeable sarcomatoid com-
ponent is present whereas epithelioid-labelled cores be-
come negative examples (¥Yp = 0). Our goal is then to
build a machine learning model F(B; ®) with trainable
parameters @ that can use a labelled training dataset
D = {(B1,Y1),(B2,Y2),....(By, Yy)} to generate a pre-
dicted label for a test core B. This is done by denoted
by aggregating instance level predictions z; = f(x;;¢)
to give Zp = F(B;®) = Agg({zi = f(xi;P)lxi € BY)
through an appropriate aggregation function Agg(-) such
as max or average across top most positive instances.

Modelling the mesothelioma subtyping problem
through MIL allows us to use the weakly supervisory
signal from core-level labels to learn an instance-level
scoring, with which we can identify predominantly EM
or SM regions in a core. This enables us to quantify
where each tissue component falls in the EM-to-SM
continuum according to the proportion of positive (sar-
comatoid) instances. This fine-grained and natural char-
acterisation of a tumor can lead to more informed deci-
sions regarding treatment etc. to be made.

4. Sampling-based MIL training for CNNs

‘We propose a simple but powerful approach for solv-
ing the MIL problem underlying mesothelioma subtyp-
ing based on the fundamental definition of MIL. In the
binary case, MIL can be paraphrased as ‘only the most



positive instance in a bag counts’. Recall from Section 3
we label a bag as positive if it contains at least one pos-
itive instance. Intuitively, then, during training we wish
to make the most positive scoring instances of negative
bags less positive, and the positive instances of positive
bags more positive. We would also like to avoid forcing
negative instances in a positive bag to become positive
labelled. Many approaches [11], [9], rank instances ac-
cording to an instance score, and learn only on the max
(or top N) of these. However, this has some potential
problems:

1. We learn only on very few instances. A significant
proportion of the bag may be positive, but only the
top few will contribute to learning per bag. This
may be fine if we have many example bags to learn
from, but can become a problem if we have rela-
tively few bags as the model may rapidly over fit
the resulting small number of top instances.

2. The method can be susceptible to unfortunate ini-
tialization. If the initial weights of the model hap-
pen to score some unimportant instances highly, a
situation may arise where the model is learning on
a small subset of instances which have little to no
relation to the bag labels, and may get stuck in an
extremely sub-optimal local minimum.

In our approach, we minimise these issues by randomly
sampling instances from each bag with a probability that
is a continuous function of their instance score, sam-
pling higher scoring instances more often. Formally, for
each bag B we define a probability distribution Pp (ini-
tially uniform) over instances in B. Given the prediction
scores z; = f(x;,¢) € [0, 1] for an instance x; € B, from
a CNN f with learnable weights ¢, we set

' +c
Z_/(Z‘(,-l +0)
In Eq. 1, ¢ is a small constant which limits how small
Pg(i) can get so that all instances are occasionally sam-
pled, and a controls how heavily we weight for positive
instances. For each training epoch, we sample 20% of
the patches in each bag according to the distribution in
Eq. 1 for training. In the extreme of @ = 0, all instances
are weighted equally and we simply learn on all patches
with label inherited from the bag label, disregarding the
MIL setting. In the case of @ — oo (and assuming c is
reduced accordingly), we recover something similar to
the max-based MIL approach of [10] or [9], where we
learn only on the maximal instance of each bag. The
pseudo-code for our method can be found in Algorithm.
1, and it is illustrated diagrammatically in Figure 1.

Pp(i) = (1)

Algorithm 1 Pseudo-code for MIL CNN Training
Initialise Pp: uniform distribution for all training
bags B
for e in epochs:
S: Sample 20% instances ~ Pg from each
training core
For batch of instances X and bag labels Y in S':
Z=fX.9)
L=CE(Z,Y) #cross-entropy loss
Update ¢ to minimise L
Save ¢y, if validation AUC improves
For instances x; € B in each training bag B:
zi = f(x;,¢)  #inference pass
Update Pp’s according to Eq. 1
Return best model (-, pesr)

This approach mitigates the problems mentioned ear-
lier, as

1. We learn from all positive instances in a bag, not
just the top N. As the probability distribution is
calculated per bag (core), the method adjusts to the
varying proportion of positive instances in different
bags.

2. It is robust to initialisation, as initial probability
distributions are likely to be fairly flat, and (assum-
ing a not large) the sampling does not focus heav-
ily on positive instances until the model has started
to become more sure of its predictions (i.e when its
outputs z; become more polarised).

Our approach improves on similar models in the liter-
ature by removing the need for some arbitrary, discon-
tinuous cut-off in the way we select instances to learn
from during training, while still focusing the training
on the most positive instances, which are the most im-
portant examples in a MIL setting. As the probability
distribution to be sampled from is a continuous function
calculated on the fly for each bag from the current model
predictions at each iteration, it is adaptive to the differ-
ent distributions of positive instances present in the bags
in the training set.

5. Incorporating morphological features

We would ideally want that a deep learning model
trained on histopathological images would learn to iden-
tify the morphological features of cells present in a
patch that are relevant to the problem, together with any
other important features of the tissue images. However
this may not be the case when learning on a relatively
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which outputs the patch score.

small amount of weakly labelled data. In these cases, it can help to provide domain knowledge directly. To this



end, we have used stardist [19] to segment the cells in
each TMA core, and have associated with each image
patch the cells contained within it. For each cell, we
have calculated, using QuPath [20], a number of mor-
phological features as follows:

o Shape features: Area, length, circularity, Max and
Min diameter for both nucleus and whole cell

o Intensity features: Mean, Median and Standard
Deviation for Hematoxylin and Eosin channels
over cell nucleus, cell cytoplasm and whole cell

o Shape/intensity smoothed: Above features
smoothed over nearby cells using a gaussian
kernel of diameter 50 um

e Delaunay cluster features: number of neighbours,
edge length statistics, cluster means of above fea-
tures.

e Haralick texture features [21] on a small circular
region around detection: calculated on the Eosin
channel, the Hematoxylin channel and on the OD
sum.

We have then calculated simple per-patch statistics
(mean and standard deviation over the cells contained
in the patch) for each of these morphological features,
together with a cell count, and provided these as an ad-
ditional input to the model for each patch. This results
in a feature vector of length 321. The model incorpo-
rates this information via a small MLP, whose output is
concatenated to the 512 features output by the resnet34
backbone before the final prediction head, as shown in
figure 2. The remainder of our model training paradigm
is kept the same.

In this way we can introduce domain knowledge, pro-
viding to the model the knowledge that cells are impor-
tant histological entities within tumor tissue, and fea-
tures describing their appearance are likely to be useful
for subtype prediction. This means the model does not
need to learn the concept of cells, and the relevant fea-
tures of the cells, from scratch, which may be expecting
too much of a model given relatively limited training
data.

A better way for such domain information to enter
the model would be through the use of a computational-
pathology specific pre-trained backbone having learned
a highly expressive representation for Cpath images.
However currently no such general purpose Cpath back-
bone has emerged, and most CPath applications when

doing transfer learning still rely on Imagenet pre-trained
models.

6. Results and Discussion

We use a ResNet34 pre-trained on ImageNet as the
backbone in our CNN model [22], due to its consistently
strong performance over a wide range of application
areas including computational pathology ([15], [23]),
combined with its relatively small footprint. Larger
models were not expected to provide much improve-
ment due to the relatively small size of the dataset,
meaning the additional capacity provided by larger net-
works would not be well utilized. We train our model
using the Adam optimizer [24] with batch size of 64
over a maximum of 200 epochs with early stopping.
Random rotations with equal probability of 0.25 for 0,
90, 180 or 270° rotation, in combination with flips with
probability p = 0.5, and a small amount of colour jitter
using the pytorch ColorJitter function (with strength ar-
guments brightness=0.1, contrast=0.05, saturation=0.2,
and hue=0.2) were applied to images during training.
The learning rate used was 5 x 107>, weight decay 1074,
with @ = 2 and ¢ = 0.01 (See Eq. 1). We choose a rela-
tively low learning rate over a larger number of epochs
because we update the probabilities used for sampling
after each epoch, so we do not want the ‘true’ distri-
bution to change too quickly over a single epoch. To
address class imbalance, losses per class were weighted
inversely to their class counts. We use a one-cycle learn-
ing rate schedule as introduced in [25]. During infer-
ence on cores, we aggregate the instance scores by av-
eraging the top 5 instances. This is more robust than
max aggregation, where a single poorly scored instance
can completely change the aggregated score. Our model
is implemented in PyTorch; code and data is available at
https://github.com/measty/PINS. Models were trained
on a workstation with an nvidia RTX 3080 12Gb graph-
ics card, 64Gb RAM and an AMD Ryzen 9 5900X CPU.
Training times varied due to early stopping, but were on
the order of a day for a full cross-validation run.

For performance evaluation we employ a hold-one-
out cross-validation strategy over slides, so that for each
fold all cores of a single slide are held out as the test set.
This is done to avoid any potential bias from systematic
differences between slides, and to ensure no mixing of
cores from the same patient occurs between the train-
ing and testing sets. The cores to be used for training
are split 75%-25% into train and validation sets, respec-
tively.

The results of our prediction model (which we name
PINS for the Positive INstance Sampling that lies at its
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Figure 3: ROC curves over 4-slide folds. Green and red plots shows
curves after adjustment for labels from expert pathologist. Morph. de-
notes model on instances augmented with patch-level cell morphology
features.

core) are reported in Table 1, together with baseline re-
sults from max-based MIL, which is the approach used
to train the patch model in [15], and the model result-
ing from training on all patches with no regard for the
MIL setting during training (naive-MIL in Table 1). We
also provide results of CLAM [26], an attention based
MIL approach, on our dataset. Our model achieves an
AUROC of 0.83 and average precision (AP) of 0.73.
The ROC curve for our method can be found in Fig.
3. As can be seen from Table 1, the max-based MIL
strategy performs poorly. This is likely due to the rel-
atively small size of our training dataset which is or-
ders of magnitude smaller than the very large dataset
used in [15], which reported excellent performance us-
ing this strategy. Limiting learning to only one instance
per core in each epoch exacerbates problems inherent
in small datasets, as the model may rapidly overfit the
top patches of positive bags. In contrast, our method
allows learning from a wider selection of positive in-
stances according to the model estimate of the propor-
tion of positive instances in each bag resulting in much
improved performance. Purely patch-based learning,
that is simply learning on all patches labelled according
to their bag label, performs surprisingly well, scoring
quite close to our MIL method. This is likely due to the
relatively high proportion of positive instances that are
expected to be present in many of the positive bags (for
example a sarcomatoid core is expected to comprise of

1.0

AUC/AP

mostly positive instances). This makes the implicit as-
sumption a patch-based model makes, namely that all
instances share the label of the bag, less wrong for this
dataset compared to other MIL problems.

0.95
—4— AUC
—— AP
0.90
0.85
. ﬁ\g
0.75 1
0.70 4
0.65 T T T T T
0.0 0.5 1.0 2.0 4.0
alpha

Figure 4: AUC and AP of model as « is varied. a around 1-2 allows
sampling on positive instances to occur without focusing to quickly or
too sharply on a very small subset of the most positive instances.

Labels on histopathology images are often noisy, as
the classification into clinical categories is subjective
and opinion can vary significantly between pathologists.
This is especially true in the context of MM, which is
particularly difficult to diagnose. Thus, we sought an in-
dependent opinion from an expert pathologist on a small
set of examples that were most consistently misclassi-
fied, to see to what extent the model could be justified on
examples where its predictions differed from the origi-
nal labelling.

In BM, a TMA core may represent a focal area that
is specifically, either epithelioid or sarcomatoid. Of 14
consistently miss-classified cores, the opinion of the ex-
pert pathologist was that in 9 cases the model could be
justified in its prediction given the representative core
that was available for assessment. Further, 3 of the re-
maining cases contained very few tumor cells or were
otherwise very challenging cases. Adjusting the ground
truth for the 9 justified misclassifications to align with
the pathologists assessment of the cores improves AUC
(see Fig. 3) from 0.83 to 0.87, and AP from 0.73 to 0.81.

When providing the model both an rgb patch image
and a vector of aggregate morphological features of the
cells contained in the patch, performance further im-



Metric AUC-ROC Avg. Sensitivity Specificity accuracy f1 score
Precision

max-MIL 0.70 + 0.04 0.58 +0.12 0.54 +0.07 0.73 £ 0.09 0.68 +0.03 0.54 £ 0.05
naive-MIL 0.81 £ 0.04 0.68 +0.11 0.72 £ 0.08 0.71 £ 0.1 0.74 £ 0.04 0.67 +£0.03
PINS 0.83 +0.04 0.73 +0.09 0.77 +£0.12 0.68 +0.11 0.75 £ 0.06 0.68 +0.11
PINS (P) 0.87 £ 0.04 0.81 +0.07 0.82 +0.1 0.71 £0.13 0.77 +£0.03 0.72 + 0.07
PINS-M (P) 0.89 + 0.05 0.84 + 0.08 0.87 + 0.06 0.77 + 0.05 0.81 + 0.04 0.77 + 0.05
CLAM (P) 0.84 = 0.07 0.74 £0.11 0.75+0.11 0.77 + 0.02 0.77 +£0.03 0.71 £ 0.06

Table 1: Summary of results (meanzstdev). PINS (P) indicates metric for a method after adjustment for labels from expert pathologist. PINS-M

denotes model including morphological feature vector.

proves to an AUC of 0.89 and AP of 0.84. This confirms
the expectation that in cases where training data is lim-
ited, if we can find a way to provide additional domain
knowledge to the model we can achieve better perfor-
mance. The confusion matrix for this model aggregated
over all folds is

CM:[113 35]

10 76

revealing that our models errors are skewed slightly
towards false positive classifications.

An important parameter in our sampling-based MIL
approach is @, which as discussed in Section 4 controls
how heavily we weight on the instance score when de-
termining the probability distribution to be used when
sampling training instances. We have investigated the
effect of varying this parameter between @« = 0 (no
weighting by score) and @ = 4, a very heavy weight-
ing on instance score. Results are shown in Fig. 4.
We expect o between 1 and 2 will be appropriate in
most cases, allowing training to focus on positive ex-
amples without the distribution becoming too heavily
focused on high-scoring patches before the model has
undergone sufficient training for scores on positive and
negative instances to diverge significantly as the model
starts to learn what positive instances look like. An ex-
tremely high « also forfeits one of the main advantages
of our approach, which is to allow all positive instances,
not just the very few highest scoring, to participate in
training.

Heatmaps illustrating the output of our network are
discussed in Fig. 5. Quantifying the proportion of a core
which is predicted as SM subtype in this way could en-
able a much less subjective characterisation of a tissue
sample. It also allows a more fine-grained characterisa-
tion of a core if desired.

7. Conclusions and Future Work

In this work, we demonstrate for the first time that
an MIL framework can successfully predict presence
of a sarcomatoid component in local tissue regions,
paving the way for a quantitative categorisation of ma-
lignant mesothelioma subtypes. Incorporating the MIL
setting into model training by sampling positive in-
stances weighted on instance score instead of consid-
ering only the max or top few instances is shown to
improve model performance. We believe our approach
opens new opportunities for more objective assessment
of epithelial-mesenchymal transformation where intra-
tumor heterogeneity represents a gradient that can be
difficult to assess by routine examination by histopathol-
ogy. The output of the proposed model can be used
to create a smoother continuum of disease classifica-
tion by determining the extent of the different cellular
sub-populations at the patch level. Future work will be
focused on including contextual information and iden-
tifying subtype at the cell level in addition to a detailed
comparison with other backbone CNNs and larger-scale
multi-centric evaluation on whole slide images. Due to
a lack of ground truth cell segmentations on mesothe-
lioma tissue, the presented work used a stardist model
that has been trained for general cell segmentation on
a variety of tissue. While the resulting segmentations
were visually validated as being reasonable segmenta-
tions by expert pathologists involved in the study, this
does represent a limitation of the study as quantitative
validation of cell segmentation cannot be reported, and
it is likely that segmentation could be improved through
the use of a model fine-tuned on mesothelioma-specific
cell boundary annotations. A cell segmentation model
capable of predicting cellular phenotypes at single cell
level could also be considered, to enable a more accu-
rate assessment of tumour heterogeneity and aid patho-
logical assessment. Explainability is an extremely im-
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Figure 5: Representative Heatmaps of model predictions. a) a core labelled Epitheloid, which was consistently misclassified as
positive (i.e significant SM component present). This agreed with the second opinion obtained from an expert pathologist, making
this an example of a justified misclassification. From the closeup, spindle-like morphology of cells can be seen. b) A correctly-
predicted epithelioid-predominant core. As can be seen in b) and the closeup of c¢), patches demonstrating the typical rounded cell
morphology of the EM subtype appear in bluer shades. c) A correctly-predicted biphasic core with an even mix of EM and SM
components. d) A Sarcomatoid core, correctly predicted. In comparison to a) and c), has a much higher proportion of the core

identified as SM.

portant aspect of Al in the context of medicine, so an-
other avenue of future work could be to add a layer of
explainable Al such as [27] to highlight the features in
image patches that are particularly relevant to the model
prediction.
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Highlights:

e Malignant Mesothelioma Subtyping of TMA core tissue regions using Machine Learning

¢ Novel sampling driven MIL approach which maximises use of available positive instances for
training

¢ Incorporating cell morphology features in addition to image patches shown to improve
performance

e Data and method open source
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