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ant Mesothelioma is a difficult to diagnose and highly lethal cancer usually associated with asbestos exposu
e broadly classified into three subtypes: Epithelioid, Sarcomatoid, and a hybrid Biphasic subtype in whi
ant components of both of the previous subtypes are present. Early diagnosis and identification of the subty
treatment and can help improve patient outcome. However, the subtyping of malignant mesothelioma, a

ally the recognition of transitional features from routine histology slides has a high level of inter-observ
ity.
is work, we propose an end-to-end multiple instance learning (MIL) approach for malignant mesotheliom
ng. This uses an adaptive instance-based sampling scheme for training deep convolutional neural networks
image patches that allows learning on a wider range of relevant instances compared to max or top-N bas
proaches. We also investigate augmenting the instance representation to include aggregate cellular morph
tures from cell segmentation. The proposed MIL approach enables identification of malignant mesothel
s of specific tissue regions. From this a continuous characterization of a sample according to predominance
atoid vs epithelioid regions is possible, thus avoiding the arbitrary and highly subjective categorisation by cu
sed subtypes. Instance scoring also enables studying tumor heterogeneity and identifying patterns associat
fferent subtypes. We have evaluated the proposed method on a dataset of 234 tissue micro-array cores w
OC of 0.89 ± 0.05 for this task. The dataset and developed methodology is available for the community
ithub.com/measty/PINS.

ds: Malignant Mesothelioma, Multiple Instance Learning, Computational Pathology, Deep Learning, Canc
ing

oduction

gnant Mesothelioma (MM) is an aggressive can-
he pleural lining, primarily associated with as-
exposure [1]. It has a long latency period from
xposure, to eventual carcinogenesis, and is diffi-
diagnose due to its nonspecific clinical manifes-
As a result, diagnosis is usually confirmed in an
d stage [2], leading to the 5 year survival rate
ss than 5% [3]. Hence there is an urgent clinical

need to detect MM at its early onset when treatment
more effective. MM is classified into 3 subtypes [4], E
ithelioid (EM), Biphasic (BM) and Sarcomatoid (SM
Mesothelioma, with Biphasic characterised by a m
of epithelioid and sarcomatoid components, includi
Transitional Mesothelioma (TM). Epithelioid mesoth
lioma are characterised by malignant cells that are c
tologically round with varying grading of atypia. S
comatoid mesothelioma cells are generally recognis

submitted to Elsevier June 30, 20
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gnant spindle cells [5]. The Epithelioid subtype
common, and is associated with relatively more
ble outcomes, whereas Biphasic and Sarcoma-
associated with a progressively worse progno-

cent studies have also shown that the presence
itional features of TM, which share intermedi-
logy between epithelioid and spindle cell also
a poorer prognosis [6]. In MM, TM may rep-

n aspect of Epithelial Mesenchymal Transition
with cells differentiating between EM and SM,

ing that MM cases may fall more naturally on
uum of characterisation according to the rela-

valence of EM, SM and TM components. Part
otivation for this work is to go beyond the cur-

21 WHO 3 basic subtypes and move towards a
whereby we use sub-visual signals on individual
el, to specify quantitatively where a MM sample
the EM-SM continuum.
e distinction of these three histological subtypes
is crucial to patient treatment, management and

sis, it is challenging to differentiate EM, SM and
ough visual analysis as they tend to present sim-
ures to transitional patterns at some stages.
mber of deep learning methods for analyzing

elioma images have been developed recently.
mple, SpindleMesoNET [7] can separate malig-

from benign spindle cell mesothelial prolifer-
This method uses region annotations on whole
ages to train a resnet patch classifier. This dif-
m our learning task, as we do not have region
ions and must rely only on core-level labels.
ddress the challenges of assessing stromal in-
in small biopsies, the most accurate indicator
gnancy, the separation of benign and malignant
elial proliferations has been investigated [8], in
ithelial and spindle cell mesothelial processes. A
pproach for survival prediction of MM patients
esoNet [9] uses an MIL solver originally de-
for computer vision applications [10]. This has
n applied to classification of lymph node metas-
[11]. The model uses a resnet50 base followed
d convolution to give an instance level score.
l MLP prediction head on the top and bottom
tances then provides the bag-level label. Models
n learning on extremal instances can suffer from

on only a small subset of the relevant instances
training.
e examples demonstrate the successful applica-
machine learning to some prediction tasks on
sue, however automated subtyping of mesothe-
rom Hemotoxylin and Eosin (H&E) stained tis-
tions remains an open problem that has not been

addressed in the literature.
One of the issues associated with development

automated computational pathology approaches f
predicting malignant mesothelioma subtypes is th
pathologist-assigned ground-truth labels for these i
ages are typically available only at the case level. Ho
ever, we are often interested in properties of smaller
gions of a sample. To address this, tissue images c
be tiled into patches for training of deep learning mo
els and the case-level labels used as bag labels. Th
mesothelioma subtyping can be categorized as a mul
ple instance learning (MIL) or weak-supervision pro
lem. This class of problem was first introduced in [1
and various approaches have since been proposed f
use in such problems.

An attention-inspired pooling method for MIL
stance aggregation is proposed in [13]. Anoth
attention-based MIL approach is introduced in [1
Here, a dual stream approach is used where the final b
score is the mean of max instance pooling and an atte
tion based weighted average of instances attended to
the max instance. This model is applied to Camelyo
16 and TCGA lung cancer datasets. Large datasets
prostate cancer, basal cell carcinoma and breast ca
cer metastases are assembled in [15] and used to tra
an MIL model backpropagating only the top instan
per bag. In the IDaRS algorithm proposed in [16], f
each slide the training instances used in epoch t a
the top k ranked instances by prediction score from t
previous epoch t − 1, augmented by a number of ra
domly selected patches from the slide. This approa
was used to predict the status of molecular pathwa
and detect key mutations in colorectal cancer. Of t
approaches detailed in the literature, this is the clos
conceptually to the approach taken in this paper. O
approach differs in that instead of the union of top
and a purely random sampling of instances, we inste
sample at each iteration according to the current mod
score. By avoiding to use an arbitrary top N cutoff, a
instead stochastically sampling the more positive sco
ing patches through a probability distribution based
how highly each patch is scored, our approach can ada
more closely to the actual distribution of positive
stances in each bag, thus making better use of all
stances for training.

Building on our previous work [17], here we presen
simple yet effective approach to multiple instance lear
ing for MM subtype prediction with the following ma
contributions:

1. The introduction of a novel MIL-based meth
for computational pathology tasks which address

2
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ortcomings identified in similar methods regard-
robustness to initialization and learning on only

small number of the relevant instances in the
ining data. Instead of learning on some variation
top N instances, we learn on instances sampled
cording to model score. Thus, learning is fo-
sed on the more positive instances but in a more
tural, adaptive and smooth way that does not rely
an arbitrary, discontinuous cut off to select in-
nces to be used.

e collection of a dataset of MM tissue cores la-
lled by subtype, which we make publicly avail-
le for further study by the community. We also
dress a prediction task, automated subtyping of
M tissue, which has not been covered in the lit-
ture to date.

e incorporation into the model of patch level
ll morphology statistics derived from analysis of
ll segmentation on the tissue images, as a way
introduce domain knowledge (specifically, the
owledge that cells are important histological en-
ies within the tissue) into the model.

and Preprocessing

dataset used in this work is a collection of H&E
Tissue Micro-arrays (TMAs) of tumor tissue

s collected from St. George’s Hospital. It con-
4 TMA slides each with an average size of
× 40, 000 pixels scanned using a Hamamatsu
omer S360 scanner at 20× (0.4415 microns per
ith a total of 279 cores covering 102 separate
atients). After removal of dropped and severely
d/incomplete cores, we are left with 234 cores,
8 EM, 61 BM, and 25 SM cores. We perform
ne stain normalisation [18] to minimise system-
in variability between slides and cores. We tile
re into patches of 224×224 pixels at 20× mag-
n. Patches consisting of less than 50% tissue,

rmined by a tissue mask created via luminosity
lding, were discarded. Only core-level labels are
d, detailed annotations describing how different
of the core contribute to the core-level label are

ilable.

lem formulation

e biphasic subtype is a mix of epithelioid and
atoid components, the subtyping task can be

modelled as a two class problem, where the three su
types act as a crude measure of how much of the po
itive class are present. If we can train a model th
will provide instance scores that express how likely ea
patch is to be the positive class, we can move toward
more expressive characterisation of mesothelioma cor
according to the proportion of sarcomatoid compone
they contain. As subtype labels are only available at t
core level and not for individual image patches with
each core, we model the subtype prediction task
a binary Multiple Instance Learning (MIL) proble
with sarcomatoid as the positive class. Under the M
paradigm [12], an example is represented by a bag of
stances, and a bag is considered positive if it contains
least one positive sample. The goal of an MIL predic
is to use training data consisting of bags with bag lev
labels only to predict both bag and instance level lab
in testing. Formally, let B =

{
x1, ..., xnB

}
be a bag co

responding to a single TMA core in our dataset, whe
xi are instances (patches) within the bag. The numb
of instances nB can vary across bags. Each core, rep
sented by bag B, is associated with a label YB ∈ {0,
in the training dataset. In our formulation, both s
comatoid and biphasic cores are taken as positive ba
(YB = 1), as in both cases a noticeable sarcomatoid co
ponent is present whereas epithelioid-labelled cores b
come negative examples (YB = 0). Our goal is then
build a machine learning model F(B;Φ) with trainab
parameters Φ that can use a labelled training data
D = {(B1,Y1), (B2,Y2), ..., (BM ,YM)} to generate a p
dicted label for a test core B. This is done by denot
by aggregating instance level predictions zi = f (xi;
to give ZB = F(B;Φ) = Agg({zi = f (xi; ϕ)|xi ∈ B
through an appropriate aggregation function Agg(·) su
as max or average across top most positive instances.

Modelling the mesothelioma subtyping proble
through MIL allows us to use the weakly superviso
signal from core-level labels to learn an instance-lev
scoring, with which we can identify predominantly E
or SM regions in a core. This enables us to quant
where each tissue component falls in the EM-to-S
continuum according to the proportion of positive (s
comatoid) instances. This fine-grained and natural ch
acterisation of a tumor can lead to more informed de
sions regarding treatment etc. to be made.

4. Sampling-based MIL training for CNNs

We propose a simple but powerful approach for so
ing the MIL problem underlying mesothelioma subty
ing based on the fundamental definition of MIL. In t
binary case, MIL can be paraphrased as ‘only the mo

3
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instance in a bag counts’. Recall from Section 3
l a bag as positive if it contains at least one pos-
tance. Intuitively, then, during training we wish
the most positive scoring instances of negative

s positive, and the positive instances of positive
ore positive. We would also like to avoid forcing
e instances in a positive bag to become positive
. Many approaches [11], [9], rank instances ac-
to an instance score, and learn only on the max
N) of these. However, this has some potential
s:

e learn only on very few instances. A significant
oportion of the bag may be positive, but only the

few will contribute to learning per bag. This
y be fine if we have many example bags to learn
m, but can become a problem if we have rela-
ely few bags as the model may rapidly over fit
resulting small number of top instances.

e method can be susceptible to unfortunate ini-
lization. If the initial weights of the model hap-
n to score some unimportant instances highly, a
uation may arise where the model is learning on
mall subset of instances which have little to no
ation to the bag labels, and may get stuck in an
tremely sub-optimal local minimum.

pproach, we minimise these issues by randomly
g instances from each bag with a probability that

ntinuous function of their instance score, sam-
gher scoring instances more often. Formally, for
g B we define a probability distribution PB (ini-
iform) over instances in B. Given the prediction
i = f (xi, ϕ) ∈ [0, 1] for an instance xi ∈ B, from
f with learnable weights ϕ, we set

PB(i) =
zαi + c
∑

j(zαj + c)
. (1)

1, c is a small constant which limits how small
n get so that all instances are occasionally sam-
d α controls how heavily we weight for positive

es. For each training epoch, we sample 20% of
hes in each bag according to the distribution in
r training. In the extreme of α = 0, all instances

ghted equally and we simply learn on all patches
el inherited from the bag label, disregarding the

tting. In the case of α → ∞ (and assuming c is
accordingly), we recover something similar to
-based MIL approach of [10] or [9], where we

nly on the maximal instance of each bag. The
-code for our method can be found in Algorithm.
t is illustrated diagrammatically in Figure 1.

Algorithm 1 Pseudo-code for MIL CNN Training
Initialise PB: uniform distribution for all training
bags B
for e in epochs:

S : Sample 20% instances ∼ PB from each
training core

For batch of instances X and bag labels Y in S
Z = f (X, ϕ)
L = CE(Z,Y) #cross-entropy loss
Update ϕ to minimise L

Save ϕbest if validation AUC improves
For instances xi ∈ B in each training bag B:

zi = f (xi, ϕ) #inference pass
Update PB’s according to Eq. 1

Return best model f (·, ϕbest)

This approach mitigates the problems mentioned e
lier, as

1. We learn from all positive instances in a bag, n
just the top N. As the probability distribution
calculated per bag (core), the method adjusts to t
varying proportion of positive instances in differe
bags.

2. It is robust to initialisation, as initial probabil
distributions are likely to be fairly flat, and (assu
ing α not large) the sampling does not focus hea
ily on positive instances until the model has start
to become more sure of its predictions (i.e when
outputs zi become more polarised).

Our approach improves on similar models in the lit
ature by removing the need for some arbitrary, disco
tinuous cut-off in the way we select instances to lea
from during training, while still focusing the traini
on the most positive instances, which are the most i
portant examples in a MIL setting. As the probabil
distribution to be sampled from is a continuous functi
calculated on the fly for each bag from the current mod
predictions at each iteration, it is adaptive to the diff
ent distributions of positive instances present in the ba
in the training set.

5. Incorporating morphological features

We would ideally want that a deep learning mod
trained on histopathological images would learn to ide
tify the morphological features of cells present in
patch that are relevant to the problem, together with a
other important features of the tissue images. Howev
this may not be the case when learning on a relative

4
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Figure 1: Overview of proposed method, showing the instance scoring→ weight calculation→ sampling→ training loop.

Overview of model architecture and data pipeline. Cores are patched into 224x224 patches. For each patch, aggregate statistics
gical features of cells that intersect with it are calculated. The patch image and morphological feature vector are passed to the mo
tputs the patch score.

mount of weakly labelled data. In these cases, it can help to provide domain knowledge directly. To th

5
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have used stardist [19] to segment the cells in
A core, and have associated with each image

e cells contained within it. For each cell, we
lculated, using QuPath [20], a number of mor-
cal features as follows:

ape features: Area, length, circularity, Max and
in diameter for both nucleus and whole cell

tensity features: Mean, Median and Standard
viation for Hematoxylin and Eosin channels
er cell nucleus, cell cytoplasm and whole cell

ape/intensity smoothed: Above features
oothed over nearby cells using a gaussian
rnel of diameter 50 µm

launay cluster features: number of neighbours,
ge length statistics, cluster means of above fea-
es.

ralick texture features [21] on a small circular
ion around detection: calculated on the Eosin

annel, the Hematoxylin channel and on the OD
m.

e then calculated simple per-patch statistics
and standard deviation over the cells contained
atch) for each of these morphological features,
r with a cell count, and provided these as an ad-
input to the model for each patch. This results
ture vector of length 321. The model incorpo-
is information via a small MLP, whose output is
nated to the 512 features output by the resnet34
ne before the final prediction head, as shown in
. The remainder of our model training paradigm
the same.
s way we can introduce domain knowledge, pro-
o the model the knowledge that cells are impor-
tological entities within tumor tissue, and fea-
scribing their appearance are likely to be useful

type prediction. This means the model does not
learn the concept of cells, and the relevant fea-
the cells, from scratch, which may be expecting

ch of a model given relatively limited training

tter way for such domain information to enter
el would be through the use of a computational-
gy specific pre-trained backbone having learned
y expressive representation for Cpath images.
er currently no such general purpose Cpath back-
s emerged, and most CPath applications when

doing transfer learning still rely on Imagenet pre-train
models.

6. Results and Discussion

We use a ResNet34 pre-trained on ImageNet as t
backbone in our CNN model [22], due to its consisten
strong performance over a wide range of applicati
areas including computational pathology ([15], [23
combined with its relatively small footprint. Larg
models were not expected to provide much improv
ment due to the relatively small size of the datas
meaning the additional capacity provided by larger n
works would not be well utilized. We train our mod
using the Adam optimizer [24] with batch size of
over a maximum of 200 epochs with early stoppin
Random rotations with equal probability of 0.25 for
90, 180 or 270◦ rotation, in combination with flips w
probability p = 0.5, and a small amount of colour jit
using the pytorch ColorJitter function (with strength
guments brightness=0.1, contrast=0.05, saturation=0
and hue=0.2) were applied to images during trainin
The learning rate used was 5×10−5, weight decay 10
with α = 2 and c = 0.01 (See Eq. 1). We choose a re
tively low learning rate over a larger number of epoc
because we update the probabilities used for sampli
after each epoch, so we do not want the ‘true’ dist
bution to change too quickly over a single epoch.
address class imbalance, losses per class were weight
inversely to their class counts. We use a one-cycle lear
ing rate schedule as introduced in [25]. During inf
ence on cores, we aggregate the instance scores by a
eraging the top 5 instances. This is more robust th
max aggregation, where a single poorly scored instan
can completely change the aggregated score. Our mod
is implemented in PyTorch; code and data is available
https://github.com/measty/PINS. Models were train
on a workstation with an nvidia RTX 3080 12Gb grap
ics card, 64Gb RAM and an AMD Ryzen 9 5900X CP
Training times varied due to early stopping, but were
the order of a day for a full cross-validation run.

For performance evaluation we employ a hold-on
out cross-validation strategy over slides, so that for ea
fold all cores of a single slide are held out as the test s
This is done to avoid any potential bias from systema
differences between slides, and to ensure no mixing
cores from the same patient occurs between the tra
ing and testing sets. The cores to be used for traini
are split 75%-25% into train and validation sets, respe
tively.

The results of our prediction model (which we nam
PINS for the Positive INstance Sampling that lies at

6
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ROC curves over 4-slide folds. Green and red plots shows
ter adjustment for labels from expert pathologist. Morph. de-
del on instances augmented with patch-level cell morphology

e reported in Table 1, together with baseline re-
m max-based MIL, which is the approach used
the patch model in [15], and the model result-

training on all patches with no regard for the
tting during training (naive-MIL in Table 1). We
vide results of CLAM [26], an attention based
proach, on our dataset. Our model achieves an

of 0.83 and average precision (AP) of 0.73.
C curve for our method can be found in Fig.

can be seen from Table 1, the max-based MIL
performs poorly. This is likely due to the rel-

small size of our training dataset which is or-
magnitude smaller than the very large dataset
[15], which reported excellent performance us-
strategy. Limiting learning to only one instance

e in each epoch exacerbates problems inherent
l datasets, as the model may rapidly overfit the
ches of positive bags. In contrast, our method
learning from a wider selection of positive in-
according to the model estimate of the propor-

positive instances in each bag resulting in much
ed performance. Purely patch-based learning,
imply learning on all patches labelled according
bag label, performs surprisingly well, scoring

ose to our MIL method. This is likely due to the
ly high proportion of positive instances that are
d to be present in many of the positive bags (for
e a sarcomatoid core is expected to comprise of

mostly positive instances). This makes the implicit a
sumption a patch-based model makes, namely that
instances share the label of the bag, less wrong for th
dataset compared to other MIL problems.

Figure 4: AUC and AP of model as α is varied. α around 1-2 allo
sampling on positive instances to occur without focusing to quickly
too sharply on a very small subset of the most positive instances.

Labels on histopathology images are often noisy,
the classification into clinical categories is subjecti
and opinion can vary significantly between pathologis
This is especially true in the context of MM, which
particularly difficult to diagnose. Thus, we sought an
dependent opinion from an expert pathologist on a sm
set of examples that were most consistently misclas
fied, to see to what extent the model could be justified
examples where its predictions differed from the ori
nal labelling.

In BM, a TMA core may represent a focal area th
is specifically, either epithelioid or sarcomatoid. Of
consistently miss-classified cores, the opinion of the e
pert pathologist was that in 9 cases the model could
justified in its prediction given the representative co
that was available for assessment. Further, 3 of the
maining cases contained very few tumor cells or we
otherwise very challenging cases. Adjusting the grou
truth for the 9 justified misclassifications to align w
the pathologists assessment of the cores improves AU
(see Fig. 3) from 0.83 to 0.87, and AP from 0.73 to 0.8

When providing the model both an rgb patch ima
and a vector of aggregate morphological features of t
cells contained in the patch, performance further i
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ic AUC-ROC Avg.
Precision

Sensitivity Specificity accuracy f1 score

-MIL 0.70 ± 0.04 0.58 ± 0.12 0.54 ± 0.07 0.73 ± 0.09 0.68 ± 0.03 0.54 ± 0.05
-MIL 0.81 ± 0.04 0.68 ± 0.11 0.72 ± 0.08 0.71 ± 0.1 0.74 ± 0.04 0.67 ± 0.03

0.83 ± 0.04 0.73 ± 0.09 0.77 ± 0.12 0.68 ± 0.11 0.75 ± 0.06 0.68 ± 0.11
(P) 0.87 ± 0.04 0.81 ± 0.07 0.82 ± 0.1 0.71 ± 0.13 0.77 ± 0.03 0.72 ± 0.07
-M (P) 0.89 ± 0.05 0.84 ± 0.08 0.87 ± 0.06 0.77 ± 0.05 0.81 ± 0.04 0.77 ± 0.05
M (P) 0.84 ± 0.07 0.74 ± 0.11 0.75 ± 0.11 0.77 ± 0.02 0.77 ± 0.03 0.71 ± 0.06

Summary of results (mean±stdev). PINS (P) indicates metric for a method after adjustment for labels from expert pathologist. PINS
odel including morphological feature vector.

to an AUC of 0.89 and AP of 0.84. This confirms
ectation that in cases where training data is lim-
we can find a way to provide additional domain
dge to the model we can achieve better perfor-
The confusion matrix for this model aggregated
folds is

CM =
[
113 35
10 76

]

ling that our models errors are skewed slightly
false positive classifications.
portant parameter in our sampling-based MIL

h is α, which as discussed in Section 4 controls
avily we weight on the instance score when de-
ng the probability distribution to be used when
g training instances. We have investigated the
f varying this parameter between α = 0 (no
ng by score) and α = 4, a very heavy weight-
instance score. Results are shown in Fig. 4.
ect α between 1 and 2 will be appropriate in
ses, allowing training to focus on positive ex-
without the distribution becoming too heavily
on high-scoring patches before the model has
ne sufficient training for scores on positive and

e instances to diverge significantly as the model
learn what positive instances look like. An ex-
high α also forfeits one of the main advantages

pproach, which is to allow all positive instances,
the very few highest scoring, to participate in

.
maps illustrating the output of our network are
ed in Fig. 5. Quantifying the proportion of a core
s predicted as SM subtype in this way could en-

uch less subjective characterisation of a tissue
. It also allows a more fine-grained characterisa-
a core if desired.

7. Conclusions and Future Work

In this work, we demonstrate for the first time th
an MIL framework can successfully predict presen
of a sarcomatoid component in local tissue regio
paving the way for a quantitative categorisation of m
lignant mesothelioma subtypes. Incorporating the M
setting into model training by sampling positive
stances weighted on instance score instead of cons
ering only the max or top few instances is shown
improve model performance. We believe our approa
opens new opportunities for more objective assessme
of epithelial-mesenchymal transformation where int
tumor heterogeneity represents a gradient that can
difficult to assess by routine examination by histopath
ogy. The output of the proposed model can be us
to create a smoother continuum of disease classific
tion by determining the extent of the different cellu
sub-populations at the patch level. Future work will
focused on including contextual information and ide
tifying subtype at the cell level in addition to a detail
comparison with other backbone CNNs and larger-sca
multi-centric evaluation on whole slide images. Due
a lack of ground truth cell segmentations on mesoth
lioma tissue, the presented work used a stardist mod
that has been trained for general cell segmentation
a variety of tissue. While the resulting segmentatio
were visually validated as being reasonable segmen
tions by expert pathologists involved in the study, th
does represent a limitation of the study as quantitati
validation of cell segmentation cannot be reported, a
it is likely that segmentation could be improved throu
the use of a model fine-tuned on mesothelioma-speci
cell boundary annotations. A cell segmentation mod
capable of predicting cellular phenotypes at single c
level could also be considered, to enable a more acc
rate assessment of tumour heterogeneity and aid path
logical assessment. Explainability is an extremely i
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Novel sampling driven MIL approach which maximises use of available positve instances for 

training

Incorporatng cell morphology features in additon to image patches shown to improve 

performance

Data and method open source
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