497 research outputs found

    Steroids:Modulators of inflammation and immunity

    Get PDF

    Cysteine-10 on 17 β-Hydroxysteroid dehydrogenase 1 has stabilizing interactions in the cofactor binding region and renders sensitivity to sulfhydryl modifying chemicals

    Get PDF
    17 β-Hydroxysteroid dehydrogenase type 1 (17 β -HSD1) catalyzes the conversion of estrone to the potent estrogen estradiol. 17 β -HSD1 is highly expressed in breast and ovary tissues and represents a prognostic marker for the tumor progression and survival of patients with breast cancer and other estrogen-dependent tumors. Therefore, the enzyme is considered a promising drug target against estrogen-dependent cancers. For the development of novel inhibitors, an improved understanding of the structure-function relationships is essential. In the present study, we examined the role of a cysteine residue, Cys(10), in the Rossmann-fold NADPH binding region, for 17 β -HSD1 function and tested the sensitivity towards sulfhydryl modifying chemicals. 3D structure modeling revealed important interactions of Cys(10) with residues involved in the stabilization of amino acids of the NADPH binding pocket. Analysis of enzyme activity revealed that 17 β -HSD1 was irreversibly inhibited by the sulfhydryl modifying agents N-ethylmaleimide (NEM) and dithiocarbamates. Preincubation with increasing concentrations of NADPH protected 17 β -HSD1 from inhibition by these chemicals. Cys(10)Ser mutant 17 β -HSD1 was partially protected from inhibition by NEM and dithiocarbamates, emphasizing the importance of Cys(10) in the cofactor binding region. Substitution of Cys(10) with serine resulted in a decreased protein half-life, without significantly altering kinetic properties. Despite the fact that Cys(10) on 17 β -HSD1 seems to have limited potential as a target for new enzyme inhibitors, the present study provides new insight into the structure-function relationships of this enzyme

    Hexose-6-phosphate dehydrogenase modulates the effect of inhibitors and alternative substrates of 11[beta]-hydroxysteroid dehydrogenase 1

    Get PDF
    Intracellular glucocorticoid reactivation is catalyzed by 11[beta]-hydroxysteroid dehydrogenase 1 (11[beta]-HSD1), which functions predominantly as a reductase in cells expressing hexose-6-phosphate dehydrogenase (H6PDH). We recently showed that the ratios of cortisone to cortisol and 7-keto- to 7-hydroxy-neurosteroids are regulated by 11[beta]-HSD1 and very much depend on co-expression with H6PDH, providing cosubstrate NADPH. Here, we investigated the impact of H6PDH on the modulation of 11[beta]-HSD1-dependent inter-conversion of cortisone and cortisol by inhibitors and alternative substrates. Using HEK-293 cells expressing 11[beta]-HSD1 or co-expressing 11[beta]-HSD1 and H6PDH, we observed significant differences of 11[beta]-HSD1 inhibition by natural and pharmaceutical compounds as well as endogenous hormone metabolites. Furthermore, we show potent and dose-dependent inhibition of 11[beta]-HSD1 by 7-keto-DHEA in differentiated human THP-1 macrophages and in HEK-293 cells over-expressing 11[beta]-HSD1 with or without H6PDH. In contrast, 7-ketocholesterol (7-KC) did not inhibit 11[beta]-HSD1 in HEK-293 cells, even in the presence of H6PDH, but inhibited 11[beta]-HSD1 reductase activity in differentiated THP-1 macrophages (IC~50~ = 8.1 +/- 0.9 [mu]M). 7-keto-DHEA but not 7-KC inhibited 11[beta]-HSD1 in HEK-293 cell lysates. In conclusion, cellular factors such as H6PDH can significantly modulate the effect of inhibitors and alternative 7-oxygenated substrates on intracellular glucocorticoid availability

    Monitoring inland waters with the APEX sensor, a wavelet approach

    Get PDF
    In this study a new curve fitting approach is presented to derive TSM, CHL and CDOM concentrations in inland and coastal waters from water leaving-reflectance spectra. The approach is based on the wavelet transform and is tested on simulated water-leaving reflectance spectra. For simulations SIOPS and water concentrations, representative for the Scheldt river, were used. The results shown that the approach is less sensitive to errors in the atmospheric correction or specific sensor noise. The idea is based on the development of a new minimization criteria for curve fitting. Instead of minimizing the difference between modeled and measured spectra using a simple RMSE, the RMSE is now combined with specific wavelet features. Several types of errors and noise are added to the simulated spectra to find robust features. Two minimization criteria were found which are almost insensitive to a white error and less sensitive to adjacency effects

    Rapid Neutrophil Response Controls Fast-Replicating Intracellular Bacteria but Not Slow-Replicating Mycobacterium tuberculosis

    Get PDF
    Being one of the first cells to invade the site of infection, neutrophils play an important role in the control of various bacterial and viral infections. In the present work, the contribution of neutrophils to the control of infection with different intracellular bacteria was investigated. Mice were treated with the neutrophil-depleting monoclonal antibody RB6-8C5, and the time course of infection in treated and untreated mice was compared by using intracellular bacterial species and strains varying in virulence and replication rate. The results indicate that neutrophils are crucial for the control of fast-replicating intracellular bacteria, whereas early neutrophil effector mechanisms are dispensable for the control of the slow-replicating Mycobacterium tuberculosi

    A genetically encoded reporter of synaptic activity in vivo

    Get PDF
    To image synaptic activity within neural circuits, we tethered the genetically encoded calcium indicator (GECI) GCaMP2 to synaptic vesicles by fusion to synaptophysin. The resulting reporter, SyGCaMP2, detected the electrical activity of neurons with two advantages over existing cytoplasmic GECIs: it identified the locations of synapses and had a linear response over a wider range of spike frequencies. Simulations and experimental measurements indicated that linearity arises because SyGCaMP2 samples the brief calcium transient passing through the presynaptic compartment close to voltage-sensitive calcium channels rather than changes in bulk calcium concentration. In vivo imaging in zebrafish demonstrated that SyGCaMP2 can assess electrical activity in conventional synapses of spiking neurons in the optic tectum and graded voltage signals transmitted by ribbon synapses of retinal bipolar cells. Localizing a GECI to synaptic terminals provides a strategy for monitoring activity across large groups of neurons at the level of individual synapses

    Acute Effects of 3,4-Methylenedioxymethamphetamine and Methylphenidate on Circulating Steroid Levels in Healthy Subjects

    Get PDF
    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') and methylphenidate are widely used psychoactive substances. MDMA primarily enhances serotonergic neurotransmission, and methylphenidate increases dopamine but has no serotonergic effects. Both drugs also increase norepinephrine, resulting in sympathomimetic properties. Here we studied the effects of MDMA and methylphenidate on 24-h plasma steroid profiles. Sixteen healthy subjects (eight men, eight women) were treated with single doses of MDMA (125 mg), methylphenidate (60 mg), MDMA + methylphenidate, and placebo on four separate days using a cross-over study design. Cortisol, cortisone, corticosterone, 11-dehydrocorticosterone, aldosterone, 11-deoxycorticosterone, dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEAS), androstendione, and testosterone were repeatedly measured up to 24-h using liquid-chromatography tandem mass-spectroscopy. MDMA significantly increased the plasma concentrations of cortisol, corticosterone, 11-dehydrocorticosterone, and 11-deoxycorticosterone and also tended to moderately increase aldosterone levels compared with placebo. MDMA also increased the sum of cortisol + cortisone and the cortisol/cortisone ratio, consistent with an increase in glucocorticoid production. MDMA did not alter the levels of cortisone, DHEA, DHEAS, androstendione, or testosterone. Methylphenidate did not affect any of the steroid concentrations, and it did not change the effects of MDMA on circulating steroids. In summary, the serotonin releaser MDMA has acute effects on circulating steroids. These effects are not observed after stimulation of the dopamine and norepinephrine systems with methylphenidate. The present findings support the view that serotonin rather than dopamine and norepinephrine mediates the acute pharmacologically-induced stimulation of the hypothalamic-pituitary-adrenal axis in the absence of other stressors. Š 2014 S. Karger AG, Basel
    • …
    corecore