15,218 research outputs found

    Observing the evaporation transition in vibro-fluidized granular matter

    Full text link
    By shaking a sand box the grains on the top start to jump giving the picture of evaporating a sand bulk, and a gaseous transition starts at the surface granular matter (GM) bed. Moreover the mixture of the grains in the whole bed starts to move in a cooperative way which is far away from a Brownian description. In a previous work we have shown that the key element to describe the statistics of this behavior is the exclusion of volume principle, whereby the system obeys a Fermi configurational approach. Even though the experiment involves an archetypal non-equilibrium system, we succeeded in defining a global temperature, as the quantity associated to the Lagrange parameter in a maximum entropic statistical description. In fact in order to close our approach we had to generalize the equipartition theorem for dissipative systems. Therefore we postulated, found and measured a fundamental dissipative parameter, written in terms of pumping and gravitational energies, linking the configurational entropy to the collective response for the expansion of the centre of mass (c.m.) of the granular bed. Here we present a kinetic approach to describe the experimental velocity distribution function (VDF) of this non-Maxwellian gas of macroscopic Fermi-like particles (mFp). The evaporation transition occurs mainly by jumping balls governed by the excluded volume principle. Surprisingly in the whole range of low temperatures that we measured this description reveals a lattice-gas, leading to a packing factor, which is independent of the external parameters. In addition we measure the mean free path, as a function of the driving frequency, and corroborate our prediction from the present kinetic theory.Comment: 6 pages, 4 figures, submitted for publication September 1st, 200

    Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 2: User's manual

    Get PDF
    A user's manual describing the operation of three computer codes (ADD code, PTRAK code, and VAPDIF code) is presented. The general features of the computer codes, the input/output formats, run streams, and sample input cases are described

    The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire

    Full text link
    An extended Landau-Lifshitz-Gilbert (LLG) equation is introduced to describe the dynamics of inhomogeneous magnetization in a current-carrying wire. The coefficients of all the terms in this equation are calculated quantum-mechanically for a simple model which includes impurity scattering. This is done by comparing the energies and lifetimes of a spin wave calculated from the LLG equation and from the explicit model. Two terms are of particular importance since they describe non-adiabatic spin-transfer torque and damping processes which do not rely on spin-orbit coupling. It is shown that these terms may have a significant influence on the velocity of a current-driven domain wall and they become dominant in the case of a narrow wall.Comment: 19 pages, 1 figur

    Dispersion of Ripplons in Superfluid 4he

    Full text link
    A detailed study of the dispersion law of surface excitations in liquid \hef at zero temperature is presented, with special emphasis to the short wave length region. The hybridization mechanism between surface and bulk modes is discussed on a general basis, investigating the scattering of slow rotons from the surface. An accurate density functional, accounting for backflow effects, is then used to determine the dispersion of both bulk and surface excitations. The numerical results are close to the experimental data obtained on thick films and explicitly reveal the occurrence of important hybridization effects between ripplons and rotons.Comment: 23 pages, REVTEX 3.0, 11 figures upon request, UTF-326/9

    Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial

    Get PDF
    Background Moderate cooling after birth asphyxia is associated with substantial reductions in death and disability, but additional therapies might provide further benefit. We assessed whether the addition of xenon gas, a promising novel therapy, after the initiation of hypothermia for birth asphyxia would result in further improvement. Methods Total Body hypothermia plus Xenon (TOBY-Xe) was a proof-of-concept, randomised, open-label, parallel-group trial done at four intensive-care neonatal units in the UK. Eligible infants were 36–43 weeks of gestational age, had signs of moderate to severe encephalopathy and moderately or severely abnormal background activity for at least 30 min or seizures as shown by amplitude-integrated EEG (aEEG), and had one of the following: Apgar score of 5 or less 10 min after birth, continued need for resuscitation 10 min after birth, or acidosis within 1 h of birth. Participants were allocated in a 1:1 ratio by use of a secure web-based computer-generated randomisation sequence within 12 h of birth to cooling to a rectal temperature of 33·5°C for 72 h (standard treatment) or to cooling in combination with 30% inhaled xenon for 24 h started immediately after randomisation. The primary outcomes were reduction in lactate to N-acetyl aspartate ratio in the thalamus and in preserved fractional anisotropy in the posterior limb of the internal capsule, measured with magnetic resonance spectroscopy and MRI, respectively, within 15 days of birth. The investigator assessing these outcomes was masked to allocation. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00934700, and with ISRCTN, as ISRCTN08886155. Findings The study was done from Jan 31, 2012, to Sept 30, 2014. We enrolled 92 infants, 46 of whom were randomly assigned to cooling only and 46 to xenon plus cooling. 37 infants in the cooling only group and 41 in the cooling plus xenon group underwent magnetic resonance assessments and were included in the analysis of the primary outcomes. We noted no significant differences in lactate to N-acetyl aspartate ratio in the thalamus (geometric mean ratio 1·09, 95% CI 0·90 to 1·32) or fractional anisotropy (mean difference −0·01, 95% CI −0·03 to 0·02) in the posterior limb of the internal capsule between the two groups. Nine infants died in the cooling group and 11 in the xenon group. Two adverse events were reported in the xenon group: subcutaneous fat necrosis and transient desaturation during the MRI. No serious adverse events were recorded. Interpretation Administration of xenon within the delayed timeframe used in this trial is feasible and apparently safe, but is unlikely to enhance the neuroprotective effect of cooling after birth asphyxia

    Microwave power transmission system studies. Volume 2: Introduction, organization, environmental and spaceborne systems analyses

    Get PDF
    Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed
    • …
    corecore