34 research outputs found

    A novel neutralization sensitive and subdominant RAP-1-related antigen (RRA) is expressed by Babesia bovis merozoites

    Get PDF
    Objective. The Babesia bovis genome encodes a rap-1 related gene denominated RAP-1 related antigen (RRA). In this study, we analysed the pattern of expression, immunogenicity and functional relevance of RRA. Methods. Phylogenetic analysis was performed using the program Phylip. Expression of rra was analysed by Northern blots, RT-PCR, immunoprecipitation, Western blots and immunofluorescence. RRA antigenicity was tested by T-cell proliferation and Western blot analysis, and functional relevance was determined in an in vitro neutralization assay. Results. RRA is more closely related to RAP-1b of Babesia bigemina than to B. bovis RAP-1, and it is highly conserved among distinct strains. Transcriptional analysis suggests lower numbers of rra transcripts compared to rap-1. Immunoprecipitation of metabolically labelled B. bovis proteins with antibodies against synthetic peptides representing predicted antigenic regions of RRA confirmed the expression of a ∼43 kDa RRA in cultured merozoites. Antibodies present in B. bovis hyperimmune sera, but not in field-infected cattle sera, reacted weakly with recombinant RRA, and no significant stimulation was obtained using recombinant RRA as antigen in T-cell proliferation assays, indicating that RRA is a subdominant antigen. Antibodies against RRA synthetic peptides reacted with merozoites using immunofluorescence, and were able to significantly inhibit erythrocyte invasion in in vitro neutralization tests, suggesting functional relevance for parasite survival. Conclusion. B. bovis express a novel subdominant RAP-1-like molecule that may contribute to erythrocyte invasion and/or egression by the parasite.Fil: Suarez, Carlos E.. United States Department of Agriculture. Agriculture Research Service; Estados Unidos. Washington State University; Estados UnidosFil: Laughery, Jacob M.. Washington State University; Estados UnidosFil: Bastos, Reginaldo G.. Washington State University; Estados UnidosFil: Johnson, Wendell C.. United States Department of Agriculture. Agriculture Research Service; Estados UnidosFil: Norimine, Junzo. Washington State University; Estados UnidosFil: Asenzo, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas; ArgentinaFil: Brown, Wendy C.. Washington State University; Estados UnidosFil: Jacobsen, Monica Ofelia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas; ArgentinaFil: Goff, Will L.. United States Department of Agriculture. Agriculture Research Service; Estados Unido

    The role of the chemokine receptor CXCR4 in infection with feline immunodeficiency virus

    Get PDF
    Infection with feline immunodeficiency virus (FIV) leads to the development of a disease state similar to AIDS in man. Recent studies have identified the chemokine receptor CXCR4 as the major receptor for cell culture-adapted strains of FIV, suggesting that FIV and human immunodeficiency virus (HIV) share a common mechanism of infection involving an interaction between the virus and a member of the seven transmembrane domain superfamily of molecules. This article reviews the evidence for the involvement of chemokine receptors in FIV infection and contrasts these findings with similar studies on the primate lentiviruses HIV and SIV (simian immunodeficiency virus)

    Biochemical Characterization and Evaluation of a Brugia malayi Small Heat Shock Protein as a Vaccine against Lymphatic Filariasis

    Get PDF
    Filarial nematodes enjoy one of the longest life spans of any human pathogen due to effective immune evasion strategies developed by the parasite. Among the various immune evasion strategies exhibited by the parasite, Interleukin 10 (IL-10) productions and IL-10 mediated immune suppression has significant negative impact on the host immune system. Recently, we identified a small heat shock protein expressed by Brugia malayi (BmHsp12.6) that can bind to soluble human IL-10 receptor alpha (IL-10R) and activate IL-10 mediated effects in cell lines. In this study we show that the IL-10R binding region of BmHsp12.6 is localized to its N-terminal region. This region has significant sequence similarity to the receptor binding region of human IL-10. In vitro studies confirm that the N-terminal region of BmHsp12.6 (N-BmHsp12.6) has IL-10 like activity and the region containing the alpha crystalline domain and C-terminus of BmHsp12.6 (BmHsp12.6αc) has no IL-10 like activity. However, BmHsp12.6αc contains B cell, T cell and CTL epitopes. Members of the sHSP families are excellent vaccine candidates. Evaluation of sera samples from putatively immune endemic normal (EN) subjects showed IgG1 and IgG3 antibodies against BmHsp12.6αc and these antibodies were involved in the ADCC mediated protection. Subsequent vaccination trials with BmHsp12.6αc in a mouse model using a heterologous prime boost approach showed that 83% protection can be achieved against B. malayi L3 challenge. Results presented in this study thus show that the N-BmHsp12.6 subunit of BmHsp12.6 has immunoregulatory function, whereas, the BmHsp12.6αc subunit of BmHsp12.6 has significant vaccine potential

    Immunodominant Epitopes in Babesia bovis Rhoptry-Associated Protein 1 That Elicit Memory CD4(+)-T-Lymphocyte Responses in B. bovis-Immune Individuals Are Located in the Amino-Terminal Domain

    No full text
    Babesia bovis rhoptry-associated protein 1 (RAP-1), which confers partial protection against B. bovis challenge, is recognized by antibodies and T lymphocytes from cattle that have recovered from infection and are immune to subsequent challenge. RAP-1 is a 60-kDa protein with an N-terminal (NT) region that contains four cysteine residues conserved among all Babesia RAP-1 family members and a C-terminal (CT) region that contains multiple, degenerate, tandem 23-amino-acid (aa) repeats. To define the location of CD4(+)-T-cell epitopes for vaccine development using a recombinant protein or minigene construct, a series of truncated recombinant RAP-1 proteins and peptides were tested for stimulation of T-cell lines derived from B. bovis-immune cattle. CD4(+)-T-cell lines from three B. bovis-immune cattle with different DRB3 haplotypes responded to the NT region of RAP-1, whereas T cells from only one animal responded weakly to the CT region. T-cell lines from the three individuals recognized two to six NT-region peptides spanning aa 134 to 316 and representing at least four dominant epitopes. Using RAP-1-specific CD4(+)-T-cell clones, two NT-region epitopes, EYLVNKVLYMATMNYKT (aa 187 to 203) and EAPWYKRWIKKFR (aa 295 to 307), and one CT-region repeat epitope, FREAPQATKHFL, which is present twice at aa positions 391 to 402 and 414 to 425, were identified. Several peptides representing degenerate repeats of the agonist CT-region peptide FREAPQATKHFL neither stimulated responses of T-cell clones specific for this peptide nor inhibited responses to the agonist peptide. Upon stimulation with specific antigen, T-cell clones specific for NT or CT epitopes produced gamma interferon. The presence of T-helper-cell epitopes in the NT domain of RAP-1, which is highly conserved among otherwise antigenically different strains of B. bovis, supports the inclusion of this region in vaccine constructs to be tested in cattle

    Identification of Novel Antigenic Proteins in a Complex Anaplasma marginale Outer Membrane Immunogen by Mass Spectrometry and Genomic Mapping

    No full text
    Immunization with purified Anaplasma marginale outer membranes induces complete protection against infection that is associated with CD4 + T-lymphocyte-mediated gamma interferon secretion and immunoglobulin G2 (IgG2) antibody titers. However, knowledge of the composition of the outer membrane immunogen is limited. Recent sequencing and annotation of the A. marginale genome predicts at least 62 outer membrane proteins (OMP), enabling a proteomic and genomic approach for identification of novel OMP by use of IgG serum antibody from outer membrane vaccinates. Outer membrane proteins were separated by two-dimensional electrophoresis, and proteins recognized by total IgG and IgG2 in immune sera of outer membrane-vaccinated cattle were detected by immunoblotting. Immunoreactive protein spots were excised and subjected to liquid chromatography-tandem mass spectrometry. A database search of the A. marginale genome identified 24 antigenic proteins that were predicted to be outer membrane, inner membrane, or membrane-associated proteins. These included the previously characterized surface-exposed outer membrane proteins MSP2, operon associated gene 2 (OpAG2), MSP3, and MSP5 as well as recently identified appendage-associated proteins. Among the 21 newly described antigenic proteins, 14 are annotated in the A. marginale genome and include type IV secretion system proteins, elongation factor Tu, and members of the MSP2 superfamily. The identification of these novel antigenic proteins markedly expands current understanding of the composition of the protective immunogen and provides new candidates for vaccine development

    Competitive Enzyme-Linked Immunosorbent Assay Based on a Rhoptry-Associated Protein 1 Epitope Specifically Identifies Babesia bovis-Infected Cattle

    No full text
    The competitive enzyme-linked immunosorbent assay (cELISA) format has proven to be an accurate, reliable, easily standardized, and high-throughput method for detecting hemoparasite infections. In the present study, a species-specific, broadly conserved, and tandemly repeated B-cell epitope within the C terminus of the rhoptry-associated protein 1 of the hemoparasite Babesia bovis was cloned and expressed as a histidine-tagged thioredoxin fusion peptide and used as antigen in a cELISA. The assay was optimized with defined negative and positive bovine sera, where positive sera inhibited the binding of the epitope-specific monoclonal antibody BABB75A4. The cELISA accurately differentiated animals with B. bovis -specific antibodies from uninfected animals and from animals with antibodies against other tick-borne hemoparasites (98.7% specificity). In addition, B. bovis -specific sera from Australia, Argentina, Bolivia, Puerto Rico, and Morocco inhibited the binding of BABB75A4, confirming conservation of the epitope. The assay first detected experimentally infected animals between 13 and 17 days postinfection, and with sera from naturally infected carrier cattle, was comparable to indirect immunofluorescence (98.3% concordance). The assay appears to have the characteristics necessary for an epidemiologic and disease surveillance tool

    Subdominant antigens in bacterial vaccines: AM779 is subdominant in the Anaplasma marginale outer membrane vaccine but does not associate with protective immunity

    Get PDF
    Identification of specific antigens responsible for the ability of complex immunogens to induce protection is a major goal in development of bacterial vaccines. Much of the investigation has focused on highly abundant and highly immunodominant outer membrane proteins. Recently however, genomic and proteomic approaches have facilitated identification of minor components of the bacterial outer membrane that have previously been missed or ignored in immunological analyses. Immunization with Anaplasma marginale outer membranes or a cross-linked surface complex induces protection against bacteremia, however the components responsible for protection within these complex immunogens are unknown. Using outer membrane protein AM779 as a model, we demonstrated that this highly conserved but minor component of the A. marginale surface was immunologically sub-dominant in the context of the outer membrane or surface complex vaccines. Immunologic sub-dominance could be overcome by targeted vaccination with AM779 for T lymphocyte responses but not for antibody responses, suggesting that both abundance and intrinsic immunogenicity determine relative dominance. Importantly, immunization with AM779 supports that once priming is achieved by specific targeting, recall upon infectious challenge is achieved. While immunization with AM779 alone was not sufficient to induce protection, the ability of targeted immunization to prime the immune response to highly conserved but low abundance proteins supports continued investigation into the role of sub-dominant antigens, individually and collectively, in vaccine development for A. marginale and related bacterial pathogens

    Linkage between Anaplasma marginale Outer Membrane Proteins Enhances Immunogenicity but Is Not Required for Protection from Challenge

    No full text
    The prevention of bacterial infections via immunization presents particular challenges. While outer membrane extracts are often protective, they are difficult and expensive to isolate and standardize and thus are often impractical for development and implementation in vaccination programs. In contrast, individual proteins, which are easily adapted for use in subunit vaccines, tend to be poorly protective. Consequently, identification of the specific characteristics of outer membrane-based immunogens, in terms of the antigen contents and contexts that are required for protective immunity, represents a major gap in the knowledge needed for bacterial vaccine development. Using as a model Anaplasma marginale , a persistent tick-borne bacterial pathogen of cattle, we tested two sets of immunogens to determine whether membrane context affected immunogenicity and the capacity to induce protection. The first immunogen was composed of a complex of outer membrane proteins linked by covalent bonds and known to be protective. The second immunogen was derived directly from the first one, but the proteins were individualized rather than linked. The antibody response induced by the linked immunogen was much greater than that induced by the unlinked immunogen. However, both immunogens induced protective immunity and an anamnestic response. These findings suggest that individual proteins or combinations of proteins can be successfully tested for the ability to induce protective immunity with less regard for overall membrane context. Once protective antigens are identified, immunogenicity could be enhanced by cross-linking to allow a reduced immunogen dose or fewer booster vaccinations

    Anaplasma marginale Type IV Secretion System Proteins VirB2, VirB7, VirB11, and VirD4 Are Immunogenic Components of a Protective Bacterial Membrane Vaccine

    No full text
    Anaplasma and related Ehrlichia spp. are important tick-borne, Gram-negative bacterial pathogens of livestock and humans that cause acute infection and disease and can persist. Immunization of cattle with an Anaplasma marginale fraction enriched in outer membranes (OM) can provide complete protection against disease and persistent infection. Serological responses of OM vaccinees to the OM proteome previously identified over 20 antigenic proteins, including three type IV secretion system (T4SS) proteins, VirB9-1, VirB9-2, and VirB10. Subsequent studies showed that these three proteins also stimulated CD4 + T-cell responses in OM vaccinees. The T4SS, composed of a complex of proteins spanning the inner and outer membranes of certain bacteria, is an important virulence factor but is relatively unexplored as a vaccine target. The goal of this study was to determine if additional T4SS proteins are immunogenic for animals immunized with the protective OM fraction of A. marginale. T4SS proteins expressed by in vitro transcription and translation were screened for stimulating proliferation of T cells from OM vaccinees, and immunogenic proteins were expressed as recombinant proteins in Escherichia coli and their immunogenicity was verified. VirB2, a putative VirB7, VirB11, and VirD4 were immunogenic for OM vaccinees expressing several common major histocompatibility complex (MHC) class II haplotypes. VirB2 is encoded by multiple genes that share a conserved central region, and epitope mapping revealed T-cell epitopes in this region. The discovery of novel immunogenic T4SS proteins recognized by outbred individuals with common MHC haplotypes further justifies evaluating the T4SS as a potential vaccine candidate for pathogenic bacteria
    corecore