28,234 research outputs found

    A deterministic sandpile automaton revisited

    Full text link
    The Bak-Tang-Wiesenfeld (BTW) sandpile model is a cellular automaton which has been intensively studied during the last years as a paradigm for self-organized criticality. In this paper, we reconsider a deterministic version of the BTW model introduced by Wiesenfeld, Theiler and McNamara, where sand grains are added always to one fixed site on the square lattice. Using the Abelian sandpile formalism we discuss the static properties of the system. We present numerical evidence that the deterministic model is only in the BTW universality class if the initial conditions and the geometric form of the boundaries do not respect the full symmetry of the square lattice.Comment: 7 pages, 8 figures, EPJ style, accepted for publication in European Physical Journal

    Calibration update of the COMBO-17 CDFS catalogue

    Full text link
    We present an update to the photometric calibration of the COMBO-17 catalogue on the Extended Chandra Deep Field South, which is now consistent with the GaBoDS and MUSYC catalogues. As a result, photometric redshifts become slightly more accurate, with <0.01 rms and little bias in the delta_z/(1+z) of galaxies with R<21 and of QSOs with R<24. With increasing photon noise the rms of galaxies reaches 0.02 for R<23 and 0.035 at R~23.5. Consequences for the rest-frame colours of galaxies at z<1 are discussed.Comment: A&A research note, resubmitted 02 Oct 2008, 4 pages in print forma

    Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D

    Get PDF
    Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D

    A constructive algorithm for the Cartan decomposition of SU(2^N)

    Full text link
    We present an explicit numerical method to obtain the Cartan-Khaneja-Glaser decomposition of a general element G of SU(2^N) in terms of its `Cartan' and `non-Cartan' components. This effectively factors G in terms of group elements that belong in SU(2^n) with n<N, a procedure that can be iterated down to n=2. We show that every step reduces to solving the zeros of a matrix polynomial, obtained by truncation of the Baker-Campbell-Hausdorff formula, numerically. All computational tasks involved are straightforward and the overall truncation errors are well under control.Comment: 15 pages, no figures, matlab file at http://cam.qubit.org/users/jiannis

    Gravitational lens magnification by Abell 1689: Distortion of the background galaxy luminosity function

    Get PDF
    Gravitational lensing magnifies the luminosity of galaxies behind the lens. We use this effect to constrain the total mass in the cluster Abell 1689 by comparing the lensed luminosities of background galaxies with the luminosity function of an undistorted field. Since galaxies are assumed to be a random sampling of luminosity space, this method is not limited by clustering noise. We use photometric redshift information to estimate galaxy distance and intrinsic luminosity. Knowing the redshift distribution of the background population allows us to lift the mass/background degeneracy common to lensing analysis. In this paper we use 9 filters observed over 12 hours with the Calar Alto 3.5m telescope to determine the redshifts of 1000 galaxies in the field of Abell 1689. Using a complete sample of 151 background galaxies we measure the cluster mass profile. We find that the total projected mass interior to 0.25h^(-1)Mpc is (0.48 +/- 0.16) * 10^(15)h^(-1) solar masses, where our error budget includes uncertainties from the photometric redshift determination, the uncertainty in the off-set calibration and finite sampling. This result is in good agreement with that found by number count and shear-based methods and provides a new and independent method to determine cluster masses.Comment: 13 pages, 10 figures. Submitted to MNRAS (10/99); Replacement with 1 page extra text inc. new section, accepted by MNRA

    LWR core thermal-hydraulic analysis : assessment and comparison of the range of applicability of the codes COBRA IIIC/MIT and COBRA IV-I

    Get PDF
    Based on the M.S. thesis of the first author in the M.I.T. Dept. of Nuclear Engineering, 1978.This report summarizes the result of studies concerning the range of applicability of two subchannel codes for a variety of thermal-hydraulic analyses. The subchannel codes used include COBRA IIIC/MIT and the newly developed code, COBRA IV-I which is considered the benchmark code for the purpose of this report. Hence, through the comparisons of the two codes, the applicability of COBRA IIIC/MIT is assessed with respect to COBRA IV-I. A variety of LWR thermal-hydraulic analyses are examined. Results of both codes for steady-state and transient analyses are compared. The types of analysis include BWR bundle-wide analysis, a simulated rod ejection and loss of flow transients for a PWR. The system parameters were changed drastically to reach extreme coolant conditions, thereby establishing upper limits. In addition to these cases, both codes are compared to experimental data including measured coolant exit temperatures in a core, interbundle mixing for inlet flow upset cases and two-subchannel flow blockage measurements. The comparisons showed that, overall, COBRA IIIC/MIT predicts most thermal-hydraulic parameters quite satisfactorily. However, the clad temperature predictions differ from those calculated by COBRA IV-I and appear to be in error. These incorrect predictions are caused by the discontinuity in the heat transfer coefficient at the start of boiling. Hence, if the heat transfer package is corrected, then COBRA IIIC/MIT should be just as applicable as the implicit option of COBRA IV-I.Final report for research project sponsored by Long Island Lighting Company and others under the MIT Energy Laboratory Electric Utility Program

    Dual Superconformal Symmetry from AdS5 x S5 Superstring Integrability

    Full text link
    We discuss 2d duality transformations in the classical AdS5 x S5 superstring and their effect on the integrable structure. T-duality along four directions in Poincare parametrization of AdS5 maps the bosonic part of the superstring action into itself. On bosonic level, this duality may be understood as a symmetry of the first-order (phase space) system of equations for the coset components of the current. The associated Lax connection is invariant modulo the action of an so(2,4)-automorphism. We then show that this symmetry extends to the full superstring, provided one supplements the transformation of the bosonic components of the current with a transformation on the fermionic ones. At the level of the action, this symmetry can be seen by combining the bosonic duality transformation with a similar one applied to part of the fermionic superstring coordinates. As a result, the full superstring action is mapped into itself, albeit in a different kappa-symmetry gauge. One implication is that the dual model has the same superconformal symmetry group as the original one, and this may be seen as a consequence of the integrability of the superstring. The invariance of the Lax connection under the duality implies a map on the full set of conserved charges that should interchange some of the Noether (local) charges with hidden (non-local) ones and vice versa.Comment: V2: 33 pages, clarifications added and minor corrections, replaced with version to appear in PR

    Improved test of Lorentz Invariance in Electrodynamics using Rotating Cryogenic Sapphire Oscillators

    Get PDF
    We present new results from our test of Lorentz invariance, which compares two orthogonal cryogenic sapphire microwave oscillators rotating in the lab. We have now acquired over 1 year of data, allowing us to avoid the short data set approximation (less than 1 year) that assumes no cancelation occurs between the κ~e\tilde{\kappa}_{e-} and κ~o+\tilde{\kappa}_{o+} parameters from the photon sector of the standard model extension. Thus, we are able to place independent limits on all eight κ~e\tilde{\kappa}_{e-} and κ~o+\tilde{\kappa}_{o+} parameters. Our results represents up to a factor of 10 improvement over previous non rotating measurements (which independently constrained 7 parameters), and is a slight improvement (except for κ~eZZ\tilde{\kappa}_{e-}^{ZZ}) over results from previous rotating experiments that assumed the short data set approximation. Also, an analysis in the Robertson-Mansouri-Sexl framework allows us to place a new limit on the isotropy parameter PMM=δβ+1/2P_{MM}=\delta-\beta+{1/2} of 9.4(8.1)×10119.4(8.1)\times10^{-11}, an improvement of a factor of 2.Comment: Accepted for publication in Phys. Rev.
    corecore