492 research outputs found

    A Very Large Array Search for 5 GHz Radio Transients and Variables at Low Galactic Latitudes

    Get PDF
    We present the results of a 5 GHz survey with the Very Large Array (VLA) and the expanded VLA, designed to search for short-lived (≾1 day) transients and to characterize the variability of radio sources at milli-Jansky levels. A total sky area of 2.66 deg^2, spread over 141 fields at low Galactic latitudes (b≅6-8 deg), was observed 16 times with a cadence that was chosen to sample timescales of days, months, and years. Most of the data were reduced, analyzed, and searched for transients in near real-time. Interesting candidates were followed up using visible light telescopes (typical delays of 1-2 hr) and the X-ray Telescope on board the Swift satellite. The final processing of the data revealed a single possible transient with a peak flux density of f_ν≅2.4 mJy. This implies a transient's sky surface density of κ(f_ν > 1.8 mJy) = 0.039^(+0.13 +0.18)_(–0.032,–0.038) deg^(–2) (1σ, 2σ confidence errors). This areal density is roughly consistent with the sky surface density of transients from the Bower et al. survey extrapolated to 1.8 mJy. Our observed transient areal density is consistent with a neutron star's origin for these events. Furthermore, we use the data to measure the source variability on timescales of days to years, and we present the variability structure function of 5 GHz sources. The mean structure function shows a fast increase on ≈1 day timescale, followed by a slower increase on timescales of up to 10 days. On timescales between 10 and 60 days, the structure function is roughly constant. We find that ≳30% of the unresolved sources brighter than 1.8 mJy are variables at the >4σ confidence level, presumably mainly due to refractive scintillation

    Far-Ultraviolet to Near-Infrared Spectroscopy of A Nearby Hydrogen Poor Superluminous Supernova Gaia16apd

    Get PDF
    We report the first maximum-light far-Ultraviolet to near-infrared spectra (1000A - 1.62um, rest) of a H-poor superluminous supernova, Gaia16apd. At z=0.1018, it is one of the closest and the UV brightest such events, with 17.4 (AB) magnitude in Swift UV band (1928A) at -11days pre-maximum. Assuming an exponential form, we derived the rise time of 33days and the peak bolometric luminosity of 3x10^{44}ergs^-1. At maximum light, the estimated photospheric temperature and velocity are 17,000K and 14,000kms^-1 respectively. The inferred radiative and kinetic energy are roughly 1x10^{51} and 2x10^{52}erg. Gaia16apd is extremely UV luminous, emitting 50% of its total luminosity at 1000 - 2500A. Compared to the UV spectra (normalized at 3100A) of well studied SN1992A (Ia), SN2011fe(Ia), SN1999em (IIP) and SN1993J (IIb), it has orders of magnitude more far-UV emission. This excess is interpreted primarily as a result of weaker metal line blanketing due to much lower abundance of iron-group elements in the outer ejecta. Because these elements originate either from the natal metallicity of the star, or have been newly produced, our observation provides direct evidence that little of these freshly synthesized material, including 56Ni, was mixed into the outer ejecta, and the progenitor metallicity is likely sub-solar. This disfavors Pair-Instability Supernova (PISN) models with Helium core masses >=90Msun, where substantial 56Ni material is produced. Higher photospheric temperature of Gaia16apd than that of normal SNe may also contribute to the observed far-UV excess. We find some indication that UV luminous SLSNe-I like Gaia16apd could be common. Using the UV spectra, we show that WFIRST could detect SLSNe-I out to redshift of 8.Comment: 19 pages. Match with the version accepted in Ap

    Supernova PTF 09uj: A possible shock breakout from a dense circumstellar wind

    Full text link
    Type-IIn supernovae (SNe), which are characterized by strong interaction of their ejecta with the surrounding circumstellar matter (CSM), provide a unique opportunity to study the mass-loss history of massive stars shortly before their explosive death. We present the discovery and follow-up observations of a Type IIn SN, PTF 09uj, detected by the Palomar Transient Factory (PTF). Serendipitous observations by GALEX at ultraviolet (UV) wavelengths detected the rise of the SN light curve prior to the PTF discovery. The UV light curve of the SN rose fast, with a time scale of a few days, to a UV absolute AB magnitude of about -19.5. Modeling our observations, we suggest that the fast rise of the UV light curve is due to the breakout of the SN shock through the dense CSM (n~10^10 cm^-3). Furthermore, we find that prior to the explosion the progenitor went through a phase of high mass-loss rate (~0.1 solar mass per year) that lasted for a few years. The decay rate of this SN was fast relative to that of other SNe IIn.Comment: Accepted to Apj, 6 pages, 4 figure

    Spectral Models for Early Time SN 2011fe Observations

    Get PDF
    We use observed UV through near IR spectra to examine whether SN 2011fe can be understood in the framework of Branch-normal SNe Ia and to examine its individual peculiarities. As a benchmark, we use a delayed-detonation model with a progenitor metallicity of Z_solar/20. We study the sensitivity of features to variations in progenitor metallicity, the outer density profile, and the distribution of radioactive nickel. The effect of metallicity variations in the progenitor have a relatively small effect on the synthetic spectra. We also find that the abundance stratification of SN 2011fe resembles closely that of a delayed detonation model with a transition density that has been fit to other Branch-normal Type Ia supernovae. At early times, the model photosphere is formed in material with velocities that are too high, indicating that the photosphere recedes too slowly or that SN 2011fe has a lower specific energy in the outer ~0.1 M_sun than does the model. We discuss several explanations for the discrepancies. Finally, we examine variations in both the spectral energy distribution and in the colors due to variations in the progenitor metallicity, which suggests that colors are only weak indicators for the progenitor metallicity, in the particular explosion model that we have studied. We do find that the flux in the U band is significantly higher at maximum light in the solar metallicity model than in the lower metallicity model and the lower metallicity model much better matches the observed spectrum.Comment: 9 pages, 14 figures, MNRAS, in press, fixed typ

    On the progenitor of SN 2005gl and the nature of Type IIn supernovae

    Get PDF
    We present a study of the type IIn supernova (SN) 2005gl, in the relatively nearby (d~66 Mpc) galaxy NGC 266. Photometry and spectroscopy of the SN indicate it is a typical member of its class. Pre-explosion Hubble Space Telescope (HST) imaging of the location of the SN, along with a precise localization of this event using the Laser-Guide-Star assisted Adaptive Optics (LGS-AO) system at Keck Observatory, are combined to identify a luminous (M_V=-10.3) point source as the possible progenitor of SN 2005gl. If the source is indeed a single star, it was likely a member of the class of luminous blue variable stars (LBVs). This finding leads us to consider the possible general association of SNe IIn with LBV progenitors. We find this is indeed supported by observations of other SNe, and the known properties of LBV stars. For example, we argue that should the prototypical Galactic LBV eta Carina explode in a phase similar to its current state, it will likely produce a type IIn SN. We discuss our findings in the context of current ideas about the evolution of massive stars, and review the census of SNe with identified progenitors. We introduce the concept of the progenitor-SN map as a convenient means to discuss the present status and future prospects of direct searches for SN progenitors. We conclude that this field has matured considerably in recent years, and the transition from anecdotal information about rare single events to robust associations of progenitor classes with specific SN types has already begun.Comment: Submitted to ApJ. Comments welcom

    Interacting Supernovae: Types IIn and Ibn

    Full text link
    Supernovae (SNe) that show evidence of strong shock interaction between their ejecta and pre-existing, slower circumstellar material (CSM) constitute an interesting, diverse, and still poorly understood category of explosive transients. The chief reason that they are extremely interesting is because they tell us that in a subset of stellar deaths, the progenitor star may become wildly unstable in the years, decades, or centuries before explosion. This is something that has not been included in standard stellar evolution models, but may significantly change the end product and yield of that evolution, and complicates our attempts to map SNe to their progenitors. Another reason they are interesting is because CSM interaction is an efficient engine for making bright transients, allowing super-luminous transients to arise from normal SN explosion energies, and allowing transients of normal SN luminosities to arise from sub-energetic explosions or low radioactivity yield. CSM interaction shrouds the fast ejecta in bright shock emission, obscuring our normal view of the underlying explosion, and the radiation hydrodynamics of the interaction is challenging to model. The CSM interaction may also be highly non-spherical, perhaps linked to binary interaction in the progenitor system. In some cases, these complications make it difficult to definitively tell the difference between a core-collapse or thermonuclear explosion, or to discern between a non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical parameters of individual events and connections to possible progenitor stars make this a rapidly evolving topic that continues to challenge paradigms of stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3 fig

    Observed Consequences of Presupernova Instability in Very Massive Stars

    Full text link
    This chapter concentrates on the deaths of very massive stars, the events leading up to their deaths, and how mass loss affects the resulting death. The previous three chapters emphasized the theory of wind mass loss, eruptions, and core collapse physics, but here we emphasize mainly the observational properties of the resulting death throes. Mass loss through winds, eruptions, and interacting binaries largely determines the wide variety of different types of supernovae that are observed, as well as the circumstellar environments into which the supernova blast waves expand. Connecting these observed properties of the explosions to the initial masses of their progenitor stars is, however, an enduring challenge and is especially difficult for very massive stars. Superluminous supernovae, pair instability supernovae, gamma ray bursts, and "failed" supernovae are all end fates that have been proposed for very massive stars, but the range of initial masses or other conditions leading to each of these (if they actually occur) are still very certain. Extrapolating to infer the role of very massive stars in the early universe is essentially unencumbered by observational constraints and still quite dicey.Comment: 39 pages, 5 figures, to appear as chapter in the book "Very Massive Stars in the Local Universe", ed. J. Vin

    An outburst from a massive star 40 days before a supernova explosion

    Get PDF
    Various lines of evidence suggest that very massive stars experience extreme mass-loss episodes shortly before they explode as a supernova. Interestingly, several models predict such pre-explosion outbursts. Establishing a causal connection between these mass-loss episodes and the final supernova explosion will provide a novel way to study pre-supernova massive-star evolution. Here we report on observations of a remarkable mass-loss event detected 40 days prior to the explosion of the Type IIn supernova SN 2010mc (PTF 10tel). Our photometric and spectroscopic data suggest that this event is a result of an energetic outburst, radiating at least 6x10^47 erg of energy, and releasing about 0.01 Solar mass at typical velocities of 2000 km/s. We show that the temporal proximity of the mass-loss outburst and the supernova explosion implies a causal connection between them. Moreover, we find that the outburst luminosity and velocity are consistent with the predictions of the wave-driven pulsation model and disfavor alternative suggestions.Comment: Nature 494, 65, including supplementary informatio

    On the fraction of intermediate-mass close binaries that explode as type-Ia supernovae

    Full text link
    Type-Ia supernovae (SNe-Ia) are thought to result from a thermonuclear runaway in white dwarfs (WDs) that approach the Chandrasekhar limit, either through accretion from a companion or a merger with another WD. I compile observational estimates of the fraction eta of intermediate-mass stars that eventually explode as SNe-Ia, supplement them with several new estimates, and compare them self-consistently. The estimates are based on five different methods, each utilising some observable related to the SN-Ia rate, combined with assumptions regarding the IMF: the ratio of SN-Ia to core-collapse rates in star-forming galaxies; the SN-Ia rate per unit star-formation rate; the SN-Ia rate per unit stellar mass; the iron to stellar mass ratio in galaxy clusters; and the abundance ratios in galaxy clusters. The five methods indicate that a fraction in the range eta~2-40% of all stars with initial masses of 3-8 M_sun (the generally assumed SN-Ia progenitors) explode as SNe-Ia. A fraction of eta~15% is consistent with all five methods for a range of plausible IMFs. Considering also the binarity fraction among such stars, the mass ratio distribution, the separation distribution, and duplicity (every binary can produce only one SN-Ia explosion), this implies that nearly every intermediate mass close binary ends up as a SN-Ia, or possibly more SNe-Ia than progenitor systems. Theoretically expected fractions are generally one to two orders of magnitude lower. The problem could be solved: if all the observational estimates are in error; or with a ``middle-heavy'' IMF; or by some mechanism that strongly enhances the efficiency of binary evolution toward SN-Ia explosion; or by a non-binary origin for SNe-Ia.Comment: MNRAS, accepted versio
    corecore