5,652 research outputs found

    Binding between two-component bosons in one dimension

    Full text link
    We investigate the ground state of one-dimensional few-atom Bose-Bose mixtures under harmonic confinement throughout the crossover from weak to strong inter-species attraction. The calculations are based on the numerically exact multi-configurational time-dependent Hartree method. For repulsive components we detail the condition for the formation of a molecular Tonks-Girardeau gas in the regime of intermediate inter-species interactions, and the formation of a molecular condensate for stronger coupling. Beyond a critical inter-species attraction, the system collapses to an overall bound state. Different pathways emerge for unequal particle numbers and intra-species interactions. In particular, for mixtures with one attractive component, this species can be viewed as an effective potential dimple in the trap center for the other, repulsive component.Comment: 10 pages, 10 figure

    Proglacial erosion rates and processes in a glacierized catchment in the Swiss Alps

    Get PDF
    In the Swiss Alps, climatic changes have not only caused glacier retreat, but also likely increased sedimentation downstream of glaciers. This material either originates from below the glacier or from periglacial environments, which are exposed as glaciers retreat, and often consist of easily erodible sediment. Griesgletscher's catchment in the Swiss Alps was examined to quantify erosion in the proglacial area, possible hydrological drivers and contributions of the sub- and periglacial sources. Digital elevation models, created from annual aerial photographs, were subtracted to determine annual volume changes in the proglacial area from 1986 to 2014. These data show a strong increase in proglacial erosion in the decade prior to 2012, coincident with increasing proglacial area size. However, examination of the gradient between discharge and sediment evacuation, and modeled sediment transport, could suggest that the proglacial area began to stabilize and sediment supply is limited. The large influx of sediment into the proglacial reservoir, which is roughly 2.5 times greater than the amount of sediment eroded from the proglacial area, demonstrates the importance of subglacial erosion to the catchment's sediment budget. Although far more sediment originates subglacially, erosion rates in the proglacial area are over 50 times greater than the rest of the catchment. In turn, both sub- and periglacial processes, in addition to constraining sediment supply, must be considered for assessing future sediment dynamics as glacier area shrinks and proglacial areas grow

    Erosion of a granular bed driven by laminar fluid flow

    Full text link
    Motivated by examples of erosive incision of channels in sand, we investigate the motion of individual grains in a granular bed driven by a laminar fluid to give us new insights into the relationship between hydrodynamic stress and surface granular flow. A closed cell of rectangular cross-section is partially filled with glass beads and a constant fluid flux QQ flows through the cell. The refractive indices of the fluid and the glass beads are matched and the cell is illuminated with a laser sheet, allowing us to image individual beads. The bed erodes to a rest height hrh_r which depends on QQ. The Shields threshold criterion assumes that the non-dimensional ratio θ\theta of the viscous stress on the bed to the hydrostatic pressure difference across a grain is sufficient to predict the granular flux. Furthermore, the Shields criterion states that the granular flux is non-zero only for θ>θc\theta >\theta_c. We find that the Shields criterion describes the observed relationship hrQ1/2h_r \propto Q^{1/2} when the bed height is offset by approximately half a grain diameter. Introducing this offset in the estimation of θ\theta yields a collapse of the measured Einstein number qq^* to a power-law function of θθc\theta - \theta_c with exponent 1.75±0.251.75 \pm 0.25. The dynamics of the bed height relaxation are well described by the power law relationship between the granular flux and the bed stress.Comment: 12 pages, 5 figure

    Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening

    Get PDF
    Lowering total tau levels is an attractive therapeutic strategy for Alzheimer's disease and other tauopathies. High-throughput screening in neurons derived from human induced pluripotent stem cells (iPSCs) is a powerful tool to identify tau-targeted therapeutics. However, such screens have been hampered by heterogeneous neuronal production, high cost and low yield, and multi-step differentiation procedures. We engineered an isogenic iPSC line that harbors an inducible neurogenin 2 transgene, a transcription factor that rapidly converts iPSCs to neurons, integrated at the AAVS1 locus. Using a simplified two-step protocol, we differentiated these iPSCs into cortical glutamatergic neurons with minimal well-to-well variability. We developed a robust high-content screening assay to identify tau-lowering compounds in LOPAC and identified adrenergic receptors agonists as a class of compounds that reduce endogenous human tau. These techniques enable the use of human neurons for high-throughput screening of drugs to treat neurodegenerative disease

    The burden of proof: the current state of atrial fibrillation prevention and treatment trials

    Get PDF
    Atrial fibrillation (AF) is an age-related arrhythmia of enormous socioeconomic significance. In recent years, our understanding of the basic mechanisms that initiate and perpetuate AF has evolved rapidly, catheter ablation of AF has progressed from concept to reality, and recent studies suggest lifestyle modification may help prevent AF recurrence. Emerging developments in genetics, imaging, and informatics also present new opportunities for personalized care. However, considerable challenges remain. These include a paucity of studies examining AF prevention, modest efficacy of existing antiarrhythmic therapies, diverse ablation technologies and practice, and limited evidence to guide management of high-risk patients with multiple comorbidities. Studies examining the long-term effects of AF catheter ablation on morbidity and mortality outcomes are not yet completed. In many ways, further progress in the field is heavily contingent on the feasibility, capacity, and efficiency of clinical trials to incorporate the rapidly evolving knowledge base and to provide substantive evidence for novel AF therapeutic strategies. This review outlines the current state of AF prevention and treatment trials, including the foreseeable challenges, as discussed by a unique forum of clinical trialists, scientists, and regulatory representatives in a session endorsed by the Heart Rhythm Society at the 12th Global CardioVascular Clinical Trialists Forum in Washington, DC, December 3–5, 2015

    Excitations of attractive 1-D bosons: Binding vs. fermionization

    Full text link
    The stationary states of few bosons in a one-dimensional harmonic trap are investigated throughout the crossover from weak to strongly attractive interactions. For sufficient attraction, three different classes of states emerge: (i) N-body bound states, (ii) bound states of smaller fragments, and (iii) gas-like states that fermionize, that is, map to ideal fermions in the limit of infinite attraction. The two-body correlations and momentum spectra characteristic of the three classes are discussed, and the results are illustrated using the soluble two-particle model.Comment: 7 pages, 5 figure

    Editorial: The role of dispersal and transmission in structuring microbial communities

    Get PDF
    Microbial communities influence the systems they inhabit by driving ecosystem processes and promoting the health and fitness of plant and animals hosts. While an extensive body of work has documented variation in microbial community membership across hosts and systems, understanding the drivers of this variation remains a challenge. Much of the focus of these efforts has been on the characterization of host variation or the abiotic environment, and has overlooked the role of dispersal, i.e., the movement of organisms across space, and transmission, i.e., the movement of microbes among environments, hosts and between hosts and their environment

    N-Electron Giant Dipole States in Crossed Electric and Magnetic Fields

    Full text link
    Multi-electron giant dipole resonances of atoms in crossed electric and magnetic fields are investigated. Stationary configurations corresponding to a highly symmetric arrangement of the electrons on a decentered circle are derived, and a normal-mode and stability analysis are performed. A classification of the various modes, which are dominated by the magnetic field or the Coulomb interactions, is provided. Based on the MCTDH approach, we carry out a six-dimensional wave-packet dynamical study for the two-electron resonances, yielding in particular lifetimes of more than 0.1 μ\mus for strong electric fields.Comment: 37 pages, 22 figs. (plus subfigures
    corecore