418 research outputs found

    Water productivity in meat and milk production in the US from 1960 to 2016

    Get PDF
    Global demand for livestock products is rising, resulting in a growing demand for feed and potentially burdening freshwater resources to produce this feed. To offset this increased pressure on water resources, the environmental performance of livestock sector should continue to improve. Over the last few decades, product output per animal and feedstuff yields in the US have improved, but before now it was unclear to what extent these improvements influenced the water productivity (WP) of the livestock products. In this research, we estimate changes in WP of animal products from 1960 to 2016. We consider feed conversion ratios (dry matter intake per head divided by product output per head), feed composition per animal category, and estimated the water footprint of livestock production following the Water Footprint Network\u27s Water Footprint Assessment methodology. The current WP of all livestock products appears to be much better than in 1960. The observed improvements in WPs are due to a number of factors, including increases in livestock productivity, feed conversion ratios and feed crop yields, the latter one reducing the water footprint of feed inputs. Monogastric animals (poultry and swine) have a high feed-use efficiency compared to ruminants (cattle), but ruminants consume relatively large portion of feed that is non-edible for humans. Per unit of energy content, milk has the largest WP followed by chicken and pork. Per gram of protein, poultry products (chicken meat, egg and turkey meat) have the largest WP, followed by cattle milk and pork. Beef has the smallest WP. These data provide important information that may aid the development of strategies to improve WP of the livestock sector

    Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability

    Get PDF
    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption

    Identification of Residues in the Heme Domain of Soluble Guanylyl Cyclase that are Important for Basal and Stimulated Catalytic Activity

    Get PDF
    Nitric oxide signals through activation of soluble guanylyl cyclase (sGC), a heme-containing heterodimer. NO binds to the heme domain located in the N-terminal part of the β subunit of sGC resulting in increased production of cGMP in the catalytic domain located at the C-terminal part of sGC. Little is known about the mechanism by which the NO signaling is propagated from the receptor domain (heme domain) to the effector domain (catalytic domain), in particular events subsequent to the breakage of the bond between the heme iron and Histidine 105 (H105) of the β subunit. Our modeling of the heme-binding domain as well as previous homologous heme domain structures in different states point to two regions that could be critical for propagation of the NO activation signal. Structure-based mutational analysis of these regions revealed that residues T110 and R116 in the αF helix-β1 strand, and residues I41 and R40 in the αB-αC loop mediate propagation of activation between the heme domain and the catalytic domain. Biochemical analysis of these heme mutants allows refinement of the map of the residues that are critical for heme stability and propagation of the NO/YC-1 activation signal in sGC

    Gender-Specific Modulation of the Response to Arterial Injury by Soluble Guanylate Cyclase α1

    Get PDF
    Objective: Soluble guanylate cyclase (sGC), a heterodimer composed of α and β subunits, synthesizes cGMP in response to nitric oxide (NO). NO modulates vascular tone and structure but the relative contributions of cGMP-dependent versus cGMP-independent mechanisms remain uncertain. We studied the response to vascular injury in male (M) and female (F) mice with targeted deletion of exon 6 of the sGCα1 subunit (sGCα1-/-), resulting in a non-functional heterodimer. Methods: We measured aortic cGMP levels and mRNA transcripts encoding sGC α1, α2, and β1 subunits in wild type (WT) and sGCa1-/- mice. To study the response to vascular injury, BrdU-incorporation and neointima formation (maximum intima to media (I/M) ratio) were determined 5 and 28 days after carotid artery ligation, respectively. Results: Aortic cGMP levels were 4-fold higher in F than in M mice in both genotypes, and, within each gender, 4-fold higher in WT than in sGCa1-/-. In contrast, sGCα1, sGCα2, and sGCβ1 mRNA expression did not differ between groups. 3H-thymidine incorporation in cultured sGCa1-/- smooth muscle cells (SMC) was 27%±12% lower than in WT SMC and BrdU-incorporation in carotid arteries 5 days after ligation was significantly less in sGCa1-/- M than in WT M. Neointima area and I/M 28 days after ligation were 65% and 62% lower in sGCa1-/- M than in WT M mice (p<0,05 for both) but were not different in F mice. Conclusion: Functional deletion of sGCa1 resulted in reduced cGMP levels in male sGCa1-/- mice and a gender-specific effect on the adaptive response to vascular injury

    Proteome Profiling in Murine Models of Multiple Sclerosis: Identification of Stage Specific Markers and Culprits for Tissue Damage

    Get PDF
    The identification of new biomarkers is of high interest for the prediction of the disease course and also for the identification of pathomechanisms in multiple sclerosis (MS). To specify markers of the chronic disease phase, we performed proteome profiling during the later phase of myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE, day 35 after immunization) as a model disease mimicking many aspects of secondary progressive MS. In comparison to healthy controls, high resolution 2 dimensional gel electrophoresis revealed a number of regulated proteins, among them glial fibrilary acidic protein (GFAP). Phase specific up-regulation of GFAP in chronic EAE was confirmed by western blotting and immunohistochemistry. Protein levels of GFAP were also increased in the cerebrospinal fluid of MS patients with specificity for the secondary progressive disease phase. In a next step, proteome profiling of an EAE model with enhanced degenerative mechanisms revealed regulation of alpha-internexin, syntaxin binding protein 1, annexin V and glutamate decarboxylase in the ciliary neurotrophic factor (CNTF) knockout mouse. The identification of these proteins implicate an increased apoptosis and enhanced axonal disintegration and correlate well the described pattern of tissue injury in CNTF −/− mice which involve oligodendrocyte (OL) apoptosis and axonal injury

    Frequent and Recent Human Acquisition of Simian Foamy Viruses Through Apes' Bites in Central Africa

    Get PDF
    Human infection by simian foamy viruses (SFV) can be acquired by persons occupationally exposed to non-human primates (NHP) or in natural settings. This study aimed at getting better knowledge on SFV transmission dynamics, risk factors for such a zoonotic infection and, searching for intra-familial dissemination and the level of peripheral blood (pro)viral loads in infected individuals. We studied 1,321 people from the general adult population (mean age 49 yrs, 640 women and 681 men) and 198 individuals, mostly men, all of whom had encountered a NHP with a resulting bite or scratch. All of these, either Pygmies (436) or Bantus (1085) live in villages in South Cameroon. A specific SFV Western blot was used and two nested PCRs (polymerase, and LTR) were done on all the positive/borderline samples by serology. In the general population, 2/1,321 (0.2%) persons were found to be infected. In the second group, 37/198 (18.6%) persons were SFV positive. They were mostly infected by apes (37/39) FV (mainly gorilla). Infection by monkey FV was less frequent (2/39). The viral origin of the amplified sequences matched with the history reported by the hunters, most of which (83%) are aged 20 to 40 years and acquired the infection during the last twenty years. The (pro)viral load in 33 individuals infected by a gorilla FV was quite low (<1 to 145 copies per 105 cells) in the peripheral blood leucocytes. Of the 30 wives and 12 children from families of FV infected persons, only one woman was seropositive in WB without subsequent viral DNA amplification. We demonstrate a high level of recent transmission of SFVs to humans in natural settings specifically following severe gorilla bites during hunting activities. The virus was found to persist over several years, with low SFV loads in infected persons. Secondary transmission remains an open question

    HIV infection of non-dividing cells: a divisive problem

    Get PDF
    Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals

    Modelling of the effect of ELMs on fuel retention at the bulk W divertor of JET

    Get PDF
    Effect of ELMs on fuel retention at the bulk W target of JET ITER-Like Wall was studied with multi-scale calculations. Plasma input parameters were taken from ELMy H-mode plasma experiment. The energetic intra-ELM fuel particles get implanted and create near-surface defects up to depths of few tens of nm, which act as the main fuel trapping sites during ELMs. Clustering of implantation-induced vacancies were found to take place. The incoming flux of inter-ELM plasma particles increases the different filling levels of trapped fuel in defects. The temperature increase of the W target during the pulse increases the fuel detrapping rate. The inter-ELM fuel particle flux refills the partially emptied trapping sites and fills new sites. This leads to a competing effect on the retention and release rates of the implanted particles. At high temperatures the main retention appeared in larger vacancy clusters due to increased clustering rate
    corecore