76 research outputs found

    Enhanced surveillance of COVID-19 in Scotland: population-based seroprevalence surveillance for SARS-CoV-2 during the first wave of the epidemic

    Get PDF
    This work was funded by the Scottish Government.Objectives: The impact of the COVID-19 pandemic in Scotland has been amongst the most severe in Europe. Serological surveillance is critical to determine the overall extent of infection across populations and to inform the public health response. This study aimed to estimate the proportion of people who have antibodies to SARS-CoV-2 ('seroprevalence') in the general population of Scotland and to see if this changes over time. Study Design/Methods: Between International Organization for Standardization (ISO) week 17 (i.e. week commencing 20th April) and ISO week 25 (week commencing 15 June), 4751 residual blood samples were obtained from regional biochemistry laboratories in six participating regional health authority areas covering approximately 75% of the Scottish population. Samples were tested for the presence of anti-SARS-CoV-2 IgG antibodies using the LIAISON®SARS-CoV-2 S1/S2 IgG assay (DiaSorin, Italy). Seroprevalence rates were adjusted for the sensitivity and specificity of the assay using Bayesian methods. Results: The combined adjusted seroprevalence across the study period was 4.3% (95% confidence interval: 4.2%-4.5%). The proportion varied each week between 1.9% and 6.8% with no difference in antibody positivity by age, sex or geographical area. Conclusions: At the end of the first wave of the COVID-19 pandemic, only a small fraction of the Scottish population had antibodies to SARS-CoV-2. Control of COVID-19 requires the ability to detect asymptomatic and mild infections that would otherwise remain undetected through existing surveillance systems. This is important to determine the true number of infections within the general population which, in turn, can help to understand transmission, inform control measures and provide a denominator for the estimation of severity measures such as the proportion of infected people who have been hospitalised and/or have died.PostprintPeer reviewe

    Regulatory T cell-derived extracellular vesicles modify dendritic cell function

    Get PDF
    Regulatory T cells (Treg) are a subpopulation of T cells that maintain tolerance to self and limit other immune responses. They achieve this through different mechanisms including the release of extracellular vesicles (EVs) such as exosomes as shown by us, and others. One of the ways that Treg derived EVs inhibit target cells such as effector T cells is via the transfer of miRNA. Another key target for the immunoregulatory function of Tregs is the dendritic cells (DCs). In this study we demonstrate directly, and for the first time, that miRNAs are transferred from Tregs to DCs via Treg derived EVs. In particular two miRNAs, namely miR-150-5p and miR-142-3p, were increased in DCs following their interaction with Tregs and Treg derived exosomes. One of the consequences for DCs following the acquisition of miRNAs contained in Treg derived EVs was the induction of a tolerogenic phenotype in these cells, with increased IL-10 and decreased IL-6 production being observed following LPS stimulation. Altogether our findings provide data to support the idea that intercellular transfer of miRNAs via EVs may be a novel mechanism by which Tregs regulate DC function and could represent a mechanism to inhibit immune reactions in tissues

    Do Cryopreserved Regulatory T Cells Retain Their Suppressive Potency?

    No full text
    corecore