13,372 research outputs found

    A linear filter to reconstruct the ISW effect from CMB and LSS observations

    Full text link
    The extraction of a signal from some observational data sets that contain different contaminant emissions, often at a greater level than the signal itself, is a common problem in Astrophysics and Cosmology. The signal can be recovered, for instance, using a simple Wiener filter. However, in certain cases, additional information may also be available, such as a second observation which correlates to a certain level with the sought signal. In order to improve the quality of the reconstruction, it would be useful to include as well this additional information. Under these circumstances, we have constructed a linear filter, the linear covariance-based filter, that extracts the signal from the data but takes also into account the correlation with the second observation. To illustrate the performance of the method, we present a simple application to reconstruct the so-called Integrated Sachs-Wolfe effect from simulated observations of the Cosmic Microwave Background and of catalogues of galaxies.Comment: 8 pages, 6 figures, accepted for publication in the IEEE Journal of Selected Topics in Signal Processin

    Minimal mechanisms for vegetation patterns in semiarid regions

    Get PDF
    The minimal ecological requirements for formation of regular vegetation patterns in semiarid systems have been recently questioned. Against the general belief that a combination of facilitative and competitive interactions is necessary, recent theoretical studies suggest that, under broad conditions, nonlocal competition among plants alone may induce patterns. In this paper, we review results along this line, presenting a series of models that yield spatial patterns when finite-range competition is the only driving force. A preliminary derivation of this type of model from a more detailed one that considers water-biomass dynamics is also presented. Keywords: Vegetation patterns, nonlocal interactionsComment: 8 pages, 4 figure

    Novel integrated mechanical biological chemical treatment (MBCT) systems for the production of levulinic acid from fraction of municipal solid waste: A comprehensive techno-economic analysis.

    Get PDF
    This paper, for the first time, reports integrated conceptual MBCT/biorefinery systems for unlocking the value of organics in municipal solid waste (MSW) through the production of levulinic acid (LA by 5wt%) that increases the economic margin by 110-150%. After mechanical separation recovering recyclables, metals (iron, aluminium, copper) and refuse derived fuel (RDF), lignocelluloses from remaining MSW are extracted by supercritical-water for chemical valorisation, comprising hydrolysis in 2wt% dilute H2SO4 catalyst producing LA, furfural, formic acid (FA), via C5/C6 sugar extraction, in plug flow (210−230°C, 25bar, 12s) and continuous stirred tank (195−215°C, 14bar, 20mins) reactors; char separation and LA extraction/purification by methyl isobutyl ketone solvent; acid/solvent and by-product recovery. The by-product and pulping effluents are anaerobically digested into biogas and fertiliser. Produced biogas(6.4MWh/t), RDF(5.4MWh/t), char(4.5MWh/t) are combusted, heat recovered into steam generation in boiler (efficiency:80%); on-site heat/steam demand is met; balance of steam is expanded into electricity in steam turbines (efficiency:35%)

    Density functional theory study of the zeolite-mediated tautomerization of phenol and catechol

    Get PDF
    Because the structure of lignin consists mostly of inter-linked phenolic monomers, its conversion into more valuable chemicals may benefit from isomerization processes that alter the electronic structure of the aromatic rings. The tautomerization of phenolic-type compounds changes the hybridization from sp2 to sp3 of the carbon atom at the ortho position, which disables the aromaticity and facilitates the subsequent hydrogenation process. Here, we have performed a Density Functional Theory study of the tautomerization of phenol and catechol at the external surface of zeolite MFI. The tautomerization starts with the adsorption of the molecule on three-coordinated Lewis acid sites, followed by the dissociation of the phenolic hydroxyl group, with the transfer of the proton to the zeolite framework. The rotation of the deprotonated molecule enables a more favourable orientation for the back-transfer of the proton to the carbon atom at the ortho position. The energy barriers of the process are smaller than 55 kJ/mol, suggesting that this transformation is easily accessible under standard reaction conditions

    DFT modeling of the adsorption of trimethylphosphine oxide at the internal and external surfaces of zeolite MFI

    Get PDF
    The characterization of the acidity of zeolites allows a direct correlation with their catalytic activity. To this end, probe molecules are utilized to obtain a ranking of acid strengths. Trimethylphosphine oxide (TMPO) is a widely used probe molecule, which allows the sensing of solid acids by using 31P NMR. We have performed calculations based on the density functional theory to investigate the Brþnsted acid (BA) sites in zeolite MFI by adsorbing TMPO as a probe molecule. We have considered the substitution of silicon at the T2 site by aluminum, both at the internal cavity and at the external surface. The different acid strengths observed in the zeolite MFI when probed by TMPO (very strong, strong, and weak) may depend on the basicity of the centers sharing the acid proton. If the proton lies between the TMPO and one of the framework oxygen atoms binding the Al, the acidity is strong. When the framework oxygen atom is not directly binding the Al, it is less basic and a shortening of the TMPO–H distance is observed, causing an acid response of very strong. Finally, if two TMPO molecules share the proton, the TMPO–H distance elongates, rendering a weak acid character

    Effect of phytoremediated port sediment as an agricultural medium for pomegranate cultivation: Mobility of contaminants in the plant

    Get PDF
    Although the dredging of ports is a necessary management activity, it generates immense quantities of sediments, that are defined by the European Union as residues. On the other hand, the relevant peat demand for plant cultivation compromises its availability worldwide. In this context, the present work wanted to find an alternative substrate in order to replace and/or reduce the use of peat in agriculture, through the study of the suitability, concerning the exchange of substrate–plant–water pollutants, of the dredged remediated sediments as a fruit-growing media. Forty-five pomegranate trees (Punica granatum L. cv “Purple Queen”) were cultivated in three types of substrates (100% peat as a control, 100% dredged remediated sediments and 50% both mixed). The metal ion content and pesticide residues were analysed in the different plant parts (root, stem, leaves and fruits) and in drainage water. The results showed a limited transfer of pollutants. All the pollutants were below the legal limits, confirming that the dredged sediments could be used as a growing media, alone or mixed with other substrates. Thus, the results point out the need to open a European debate on the reuse and reconsideration of this residue from a circular economy point of view

    A density functional theory study of the structure of pure-silica and aluminium-substituted MFI nanosheets

    Get PDF
    The layered MFI zeolite allows a straightforward hierarchization of the pore system which accelerates mass transfer and increases its lifetime as a catalyst. Here, we present a theoretical study of the structural features of the pure-silica and aluminium-substituted MFI nanosheets. We have analysed the effects of aluminium substitution on the vibrational properties of silanols as well as the features of protons as counter-ions. The formation of the two-dimensional system did not lead to appreciable distortions within the framework. Moreover, the effects on the structure due to the aluminium dopants were the same in both the bulk and the slab. The principal differences were related to the silanol groups that form hydrogen-bonds with neighbouring aluminium-substituted silanols, whereas intra-framework hydrogen-bonds increase the stability of aluminium-substituted silanols toward dehydration. Thus, we have complemented previous experimental and theoretical studies, showing the lamellar MFI zeolite to be a very stable material of high crystallinity regardless of its very thin structure
    • 

    corecore