1,399 research outputs found

    First Ex Vivo Animal Study of a Biological Heart Valve Prosthesis Sensorized with Intravalvular Impedance

    Get PDF
    IntraValvular Impedance (IVI) sensing is an innovative concept for monitoring heart valve prostheses after implant. We recently demonstrated IVI sensing feasible in vitro for biological heart valves (BHVs). In this study, for the first time, we investigate ex vivo the IVI sensing applied to a BHV when it is surrounded by biological tissue, similar to a real implant condition. A commercial model of BHV was sensorized with three miniaturized electrodes embedded in the commissures of the valve leaflets and connected to an external impedance measurement unit. To perform ex vivo animal tests, the sensorized BHV was implanted in the aortic position of an explanted porcine heart, which was connected to a cardiac BioSimulator platform. The IVI signal was recorded in different dynamic cardiac conditions reproduced with the BioSimulator, varying the cardiac cycle rate and the stroke volume. For each condition, the maximum percent variation in the IVI signal was evaluated and compared. The IVI signal was also processed to calculate its first derivative (dIVI/dt), which should reflect the rate of the valve leaflets opening/closing. The results demonstrated that the IVI signal is well detectable when the sensorized BHV is surrounded by biological tissue, maintaining the similar increasing/decreasing trend that was found during in vitro experiments. The signal can also be informative on the rate of valve opening/closing, as indicated by the changes in dIVI/dt in different dynamic cardiac conditions

    Microwave broadband characterization of aging of SU-8 polymer as CPW substrate

    Get PDF
    In this paper we present the methodology and the numerical results related to the analysis of aging of the SU- 8 polymer when used as a primary layer for the realization of Coplanar Waveguide (CPW) structures. As test devices, we used a set of transmission lines with different lengths and T-shaped open stubs shunt resonators; by using these geometries, we are able to acquire the data in a broadband range, in principle between 1 GHz and 40 GHz. We conduct the analysis by comparing two different technology run: the first wafer with a deposited layer by a 12-year-old SU-8 and the second wafer, with the same photolithographed metallic geometries, with a brand-new processed SU-8 photoresist

    Development of a CO2 sensor for extracorporeal life support applications

    Get PDF
    Measurement of carbon dioxide (CO2) in medical applications is a well-established method for monitoring patient’s pulmonary function in a noninvasive way widely used in emergency, intensive care, and during anesthesia. Even in extracorporeal-life support applications, such as Extracorporeal Carbon Dioxide Removal (ECCO2R), Extracorporeal Membrane Oxygenation (ECMO), and cardiopulmonary by-pass (CPB), measurement of the CO2 concentration in the membrane oxygenator exhaust gas is proven to be useful to evaluate the treatment progress as well as the performance of the membrane oxygenator. In this paper, we present a new optical sensor specifically designed for the measurement of CO2 concentration in oxygenator exhaust gas. Further, the developed sensor allows measurement of the gas flow applied to the membrane oxygenator as well as the estimation of the CO2 removal rate. A heating module is implemented within the sensor to avoid water vapor condensation. Effects of temperature on the sensor optical elements of the sensors are disclosed, as well as a method to avoid signal–temperature dependency. The newly developed sensor has been tested and compared against a reference device routinely used in clinical practice in both laboratory and in vivo conditions. Results show that sensor accuracy fulfills the requirements of the ISO standard, and that is suitable for clinical applications

    Design optimization of meta-material transmission lines for linear and non-linear microwave signal processing

    Get PDF
    The possibility to use CRLH (Composite Right-/Left-Handed) cells to realize both distributed wide-band filters for linear signal processing and non-linear devices like frequency doublers is investigated analytically and numerically. Full-wave electromagnetic simulations are performed for the filtering structure by means of a commercial software package and confirm the validity of the analytic results. Numerical results for CRLH NLTL (Non-Linear Transmission Line) obtained by using the Microwave Office are discussed, providing design considerations about the synthesis of such a component

    An Update of Eyeglasses-Supported Nasal–Facial Prosthetic Rehabilitation of Cancer Patients with Post-Surgical Complications: A Case Report

    Get PDF
    Featured Application: This case report aims to describe an update of the digital protocol for the fabrication of a facial prosthesis for those patients who cannot be rehabilitated with plastic surgery because of post-surgical complications after maxillofacial surgery. In detail, it describes the application of the digital protocol to a mid-facial defect. The innovation proposed is oriented to simplify the procedures and reduce the time and cost of the process, aiming to recover the quality of life of inoperable patients. This case report aims to describe novel steps in the digital design/manufacturing of facial prostheses for cancer patients with wide inoperable residual defects, with a focus on a case of a mid-facial defect. A facial scanner was used to make an impression of the post-surgical residual defect and to digitalize it. The daughter’s face scan was used for reconstructing the missing anatomy. Using 3D printing technologies, try-in prototypes were produced in silicone material. The substructure was laser melted. The final prosthesis was relined directly onto the patient’s defect. The prosthesis resulted in a very low weight and a high elasticity of the external margins. The laser-melted substructure ensured the necessary rigidity with minimum thickness

    Androgen receptor mutations in prostate cancer

    Get PDF
    We analyzed the frequency and relevance of mutations in the coding region of the androgen receptor (AR) in genomic DNA extracted from 137 specimens of prostate cancer. The specimens were obtained from the primary tumors of patients affected by stage B disease [15 nonmicrodissected (group 1A) and 84 microdissected (group 1B)] and from the metastatic deposits of individuals with stage D1 disease [8 nonmicrodissected (group 2A) and 30 microdissected (group 2B)] who had not undergone androgen ablation therapy. The study was conducted by PCR-single strand conformational polymorphism (SSCP) analysis of exons 2-8 in the four groups and direct sequence analysis of exon 1 in group 1B. As positive and negative controls, we used genomic DNA extracted from genital skin fibroblasts of patients affected by various forms of androgen resistance with known mutations in the AR. To control for genetic instability, PCR-SSCP analysis of exon 2 of the human progesterone receptor was carried out on each specimen. The overall number of mutations detected was 11 (8%). No mutations were detected in any of the 99 patients with stage B disease. Eleven mutations were detected in exons 2-8 in 8 of the 38 patients with stage D1 disease (all in group 2B). Simultaneous analysis of exon 2 of the progesterone receptor was carried out, and no SSCP changes were identified. These data suggest that AR mutations are rare and presumably do not play a role in the initial phase of prostatic carcinogenesis. The presence of a significant number of AR mutations in metastatic disease indicates that mutations of this molecule may play a role in the most advanced phases of the natural history of this disease, either by facilitating growth or acquisition of the metastatic phenotype

    A fully automated pipeline for a robust conjunctival hyperemia estimation

    Get PDF
    Purpose: Many semi-automated and fully-automated approaches have been proposed in literature to improve the objectivity of the estimation of conjunctival hyperemia, based on image processing analysis of eyes’ photographs. The purpose is to improve its evaluation using faster fully-automated systems and independent by the human subjectivity. Methods: In this work, we introduce a fully-automated analysis of the redness grading scales able to completely automatize the clinical procedure, starting from the acquired image to the redness estimation. In particular, we introduce a neural network model for the conjunctival segmentation followed by an image processing pipeline for the vessels network segmentation. From these steps, we extract some features already known in literature and whose correlation with the conjunctival redness has already been proved. Lastly, we implemented a predictive model for the conjunctival hyperemia using these features. Results: In this work, we used a dataset of images acquired during clinical practice.We trained a neural network model for the conjunctival segmentation, obtaining an average accuracy of 0.94 and a corresponding IoU score of 0.88 on a test set of images. The set of features extracted on these ROIs is able to correctly predict the Efron scale values with a Spearman’s correlation coefficient of 0.701 on a set of not previously used samples. Conclusions: The robustness of our pipeline confirms its possible usage in a clinical practice as a viable decision support system for the ophthalmologists

    Advantages of manual and automatic computer-aided compared to traditional histopathological diagnosis of melanoma: A pilot study

    Get PDF
    Background: Cutaneous malignant melanoma (CMM) accounts for the highest mortality rate among all skin cancers. Traditional histopathologic diagnosis may be limited by the pathologists’ subjectivity. Second-opinion strategies and multidisciplinary consultations are usually performed to overcome this issue. An available solution in the future could be the use of automated solutions based on a computational algorithm that could help the pathologist in everyday practice. The aim of this pilot study was to investigate the potential diagnostic aid of a machine-based algorithm in the histopathologic diagnosis of CMM. Methods: We retrospectively examined excisional biopsies of 50 CMM and 20 benign congenital compound nevi. Hematoxylin and eosin (H&E) stained WSI were reviewed independently by two expert dermatopathologists. A fully automated pipeline for WSI processing to support the estimation and prioritization of the melanoma areas was developed. Results: The spatial distribution of the nuclei in the sample provided a multi-scale overview of the tumor. A global overview of the lesion's silhouette was achieved and, by increasing the magnification, the topological distribution of the nuclei and the most informative areas of interest for the CMM diagnosis were identified and highlighted. These silhouettes allow the histopathologist to discriminate between nevus and CMM with an accuracy of 96% without any extra information. Conclusion: In this study we proposed an easy-to-use model that produces segmentations of CMM silhouettes at fine detail level

    Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations

    Get PDF
    In this paper RF MEMS switches in coplanar waveguide (CPW) configuration designed for redundancy space applications have been analyzed, to demonstrate their reliability in terms of microwave performances when subjected to DC actuations up to one million cycles. As a result, both the investigated structures fulfill the current electrical requirements expected for redundancy logic purposes

    Basal cell carcinoma: A comprehensive review

    Get PDF
    Basal cell carcinoma (BCC) is the most common type of carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic and genetic factors. However, despite the progress in the field, BCC biology and mechanisms of resistance against systemic treatments have been poorly investigated. The aim of the present review is to provide a revision of BCC histological and molecular features, including microRNA (miRNA) dysregulation, with a specific focus on the molecular basis of BCC systemic therapies. Papers from the last ten years regarding BCC genetic and phenotypic alterations, as well as the mechanism of resistance against hedgehog pathway inhibitors vismodegib and sonidegib were included. The involvement of miRNAs in BCC resistance to systemic therapies is emerging as a new field of knowledge
    • …
    corecore