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Abstract: Purpose: Many semi-automated and fully-automated approaches have been proposed
in literature to improve the objectivity of the estimation of conjunctival hyperemia, based on image
processing analysis of eyes’ photographs. The purpose is to improve its evaluation using faster
fully-automated systems and independent by the human subjectivity. Methods: In this work, we
introduce a fully-automated analysis of the redness grading scales able to completely automatize
the clinical procedure, starting from the acquired image to the redness estimation. In particular, we
introduce a neural network model for the conjunctival segmentation followed by an image processing
pipeline for the vessels network segmentation. From these steps, we extract some features already
known in literature and whose correlation with the conjunctival redness has already been proved.
Lastly, we implemented a predictive model for the conjunctival hyperemia using these features.
Results: In this work, we used a dataset of images acquired during clinical practice.We trained a
neural network model for the conjunctival segmentation, obtaining an average accuracy of 0.94 and a
corresponding IoU score of 0.88 on a test set of images. The set of features extracted on these ROIs is
able to correctly predict the Efron scale values with a Spearman’s correlation coefficient of 0.701 on a
set of not previously used samples. Conclusions: The robustness of our pipeline confirms its possible
usage in a clinical practice as a viable decision support system for the ophthalmologists.

Keywords: artificial intelligence; computer aided diagnosis; computer vision; conjunctiva; hyper-
emia; Efron scale

1. Introduction

The estimation of conjunctival hyperemia is a standard procedure during clinical
evaluation in ophthalmology. Conjunctival redness or hyperemia is evaluated on the
dilation of blood vessels in the conjunctiva area, and it can be symptomatic of different
kinds of inflammations or infections. Its evaluation is commonly investigated for the
contact lens effects [1,2] and for the so-called dry-eyes syndrome [3]. The hyperemia
estimation is performed on images of the patient’s eye acquired using a slit lamp. The slit
lamp, also called slit bio-microscope, is an optical instrument used in ophthalmology for
the observation of eye tissues. It allows for visualizing the bulb and the ocular annexes, the
corneal layers, the vitreous and the anterior chamber, the crystalline lens and the iris. All
of this information can be acquired posing no risks for the patient.
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Hyperemia is commonly evaluated using qualitative grading scales, where the con-
junctival hyperemia is compared to a set of standardized pictures (template images or
references). These reference pictures are images artificially generated using software,
painted, or real photographs. The clinician establishes the score by matching the pa-
tient conjunctiva to the reference one that he considers the most similar. This measure is
performed for each eye independently.

There are many grading scales proposed in literature for the hyperemia estimation.
Davies (1978), Mandell (1989), and Woods (1989) proposed descriptive grading scales;
Koch et al. (1984) and Schnider (1990) proposed art illustrations for the evaluation of single
condition grading scales; Annunziato et al. (1992) and Efron (1999) extend the previous
evaluation to multiple conditions; Courtney & Lee (1982), Lupelli (1998), McMonnies
& Chapman Davies (1987), Price et al. (1982), Begley (1992), and Lofstrom et al. (1998)
introduce the use of photographic references. The latest proposed reference images were
generated using computer graphic (Jenvis, 2009). Each scale is associated with a different
set of reference images and each of them is focused on a different aspect of the hyperemia
estimation; for instance, the conjunctival redness in the Efron Grading Scales for Contact
Lens Complications [1] is expressed through five images depicting 1–5 grading ranging
from normal to severe.

A critical issue of these assessments is their reproducibility: the template matching
evaluation is an intrinsic operator-dependent procedure and thus it is affected by subjectiv-
ity. The reproducibility of the image acquisition and moreover the hyperemia evaluation
are determined by the experience of the operating clinician, and it can be affected by
several experimental conditions, leading to imprecisions and biases [4,5]. Generally, the
automation of the clinical exam provides a support for the clinical laboratory or clinical
practice assessment through faster and more reliable evaluation and reducing the reliance
on the operator expertise for the evaluation [6].

Several authors have already proposed semi-automated grading systems for the hyper-
emia quantification, offering semi-supervised pipelines to process the patient’s images [7].
All of these methods facilitate the clinician operations providing a series of automated
processing steps, which, however, require the human intervention (e.g., a manual selection
of the region of interest and color values) [3,8–14]. At the same time, they allow for intro-
ducing new quantitative grading scales that are difficult to relate to the standard clinical
assessments. These grading scales can provide a viable medical alternative to standard
grading scales ensuring greater accuracy and different information for the clinician, but
they can not be used as standalone results prior to a lengthy medical certification trial.Thus,
despite the efficiency of the automated methods, their practical usage by clinicians re-
mains limited.

The creation of a fully automated pipeline which starts from the acquired image
until the hyperemia score prediction is still an open problem [15]. Some authors have
already proposed interesting results on this problem. Sánchez Brea et al. [16] implemented
a fully automated pipeline for the segmentation of the conjunctiva, but the predictions
of their model were obtained only on a small part of the dataset on which there was a
reasonably good agreement between experts’ evaluations, discarding any source of issues,
that might be instead encountered during clinical practice. Derakhshani et al. [17] tried to
predict the assessment of the vascularity of conjunctiva using a neural network approach:
the images were rescaled to improve the computational efficiency, losing a great part of
the information; moreover, the results reported in their work are not easily interpretable,
since the final scores are obtained without a subdivision of the samples in train and test,
alongside a best-model selection procedure on the same data.

All of these methods introduced the usage of modern machine learning and deep
learning frameworks for the processing of the features extracted from the original images,
after a semi-automated segmentation of the region-of-interests (ROIs). Deep learning
convolutional neural network (CNN) image segmentation models have shown promising
results in medical applications in the last few years. We can find classical or tailored deep
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learning architectures in many medical research fields, including the opthalmologic one [18].
Despite the growth in computational power availability, which allows for enlarging the
application of even more complex deep learning models, their usage necessarily requires
the manual annotation performed by experts.

In this work, we proposed a fully-automated pipeline for the processing of slit lamp
images and hyperemia quantification. The most informative portion of the image for the
hyperemia estimation in these images is given by the vessels’ network structure [11] and
thus it is crucial to extract this component from the whole image. Our pipeline includes the
segmentation of the conjunctival area using CNN, the segmentation of the vessels network
using image processing algorithms, the extraction of a set of features related to the redness
and the prediction of the Efron scale grading value using a Ridge regression model [1]. The
full automation of the pipeline allows for including features such as the vessels network
structure that would be normally hard to quantify due to the time requirement of the
manual segmentation. In this work, we evaluated the performances of this pipeline using a
set of features tailored for the Efron scale quantification, as already discussed in literature.

2. Materials and Methods
2.1. Patient Selection

The analyzed images had been obtained during routine ophthalmological examina-
tions in the Ophthalmological Unit at IRCCS S. Orsola University Hospital of Bologna.
Images were retrieved from charts of subjects who gave their voluntary consent to research.
The study was approved by the Local Ethics Committee, and carried out in accordance
with the Declaration of Helsinki.

We collected 70 patients and for each of them the images of both eyes were acquired
(Grading Dataset, GD). Using a slit lamp, we obtained 2 images for each eye, the first taken
from the nasal part of the eye and the second one from the temporal bulbar conjunctiva.
In this way, we obtained a full set of 280 images for our analysis. Individuals between
20 and 50 years of age were selected for the current study. The patients were selected by
an heterogeneous population, and thus the dataset includes samples with high and low
redness levels. A global description of the dataset is showed in Table 1.

Table 1. Descriptive statistics of the analyzed samples in the dataset. Age and Efron grading values
are reported as mean ± standard deviation.

Grading Dataset

# of Average Average
Samples Age Efron

Male 23 48.5± 12.3 2.04± 0.81
Female 47 52.3± 10.3 1.81± 0.79

Total 70 51.4± 10.5 1.81± 0.86

2.2. Slit Lamp Images

The photos had been taken by two trained clinicians with a digital slit lamp microscope
(Topcon SL-D4 slit-lamp biomicroscope). For all the participants, the following protocol
was used for photography: 1. We illuminated with a halogen lamp, with a 7.5 KLux
illumination input to the slit lamp (both red-free and diffuser filters excluded) and with a
wide diffuse illumination of a slit lamp (8 mm circle); 2. We adopted a magnification of
16×; 3. We used a 14 mm diaphragm aperture; 4. We set the sensibility of the digital image
to 100 ISO; 5. We set the acquisition time to 1/80 s. All the photographs were acquired
under similar room illumination.

For taking images of the nasal and temporal bulbar conjunctiva, each participant was
instructed to look horizontally left and right. Gentle pressure was applied to open the
lids in order to ensure that they did not obstruct the conjunctiva during the photography.
Photographs were taken without flash and quickly to avoid dry eye and irritation.
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The images of the GD were collected during clinical practice by the clinicians without
standardized parameters of acquisition (such as brightness): each clinician acquired the
image according his best judgment, as it is standard clinical procedure.

All of the images were captured in a raw format, i.e., RGB 8-bit, and saved in JPEG
format (2576 × 1934, 150 dpi, 24 bit).

2.3. Clinical Scoring of Images

Three trained clinicians performed the evaluation of the full set of 280 images, inde-
pendently. The clinicians scored each image according to the Efron grading scale: despite
the 5 possible values of the Efron scale (from normal, 1, to severe, 5), we allowed the usage
of intermediate values in case of doubt. We have chosen the Efron scale as reference since
it is a standard reference in ophthalmology and its automation can easily encourage the
clinicians community to use our method.

All of the clinicians scored the images in the same physical space, with the same source
of illumination and without time limits. Two computer monitors (HP Z27 UHD 4K, 27′′,
3840 × 2160 resolution) were used: the first displayed the grading scale images (reference)
and in the second one the clinical images were showed. In both of the monitors, the same
screen color and brightness were used for all the three clinical evaluations.

We collected the evaluation of the three trained clinicians on the full set of images,
and we kept the median value as ground truth score for the analysis.

2.4. Image Processing Pipeline

Our image processing pipeline is composed by a series of independent and fully
automated steps (ref. Figure 1):

1. conjunctiva segmentation;
2. vessels network segmentation;
3. vessels network features extraction and color features extraction;
4. Efron scale values prediction.

Figure 1. Schematic representation of the pipeline. (Step 1) The image acquired by the slit lamp is
used as input for the Neural Network (Mobile U-Net) model for the segmentation of the conjunctival
area. The model was trained using manually annotated images validated by experts. (Step 2(a))
Focusing on the conjunctival area the image is standardized using a brighter-correction algorithm
given by a combination of median filters and background subtraction. (Step 2(b)) The image
standardization helps us to remove possible artifacts and color issues related to the non-rigid image
acquisition procedure. The processed image is used as input for the vessels network segmentation
algorithm given by a tuned implementation of the NEFI algorithm. (Step 3,4) Starting from the
vessels’ network image, a set of features for the quantification of the conjunctival redness are extracted
and used for the development of a predictive model. The full set of steps are performed automatically
and thus without any human intervention.

The first step of processing involves the segmentation of the conjunctiva area from
the background, i.e., skin, eyelids, eyelashes, and caruncle. For each image of the datasets,
we collected a manual annotation of the conjunctiva area performed and validated by
the 3 experts. The manual annotation set includes a binary mask of the original image in
which only the conjunctiva area is highlighted. The conjunctiva segmentation allows for
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reducing the region of interest of our analysis on the most informative area for the redness
evaluation.

Several already published automated grading systems for the hyperemia quantifica-
tion perform this step using semi-supervised methods, leaving to the final user the manual
selection of the region of interest (ROI) [3,8–10]. Our method automatizes this task using a
semantic segmentation neural network model trained on a set of images manual annotated
and validated by experts.

In the second step, the pipeline performs a second segmentation for the vessels’
network identification, starting from the segmented conjunctiva. The vessels network
is automatically segmented using a customized version of the NEFI [19] algorithm. The
vessels network segmentation provides a mask to apply to the original image.

In step three, the pipeline extracts features starting from the selected areas based on
quantities proposed in the literature and based on different color spaces (RGB and HSV,
i.e., Hue, Saturation, and Value). In step four, the extracted set of features was used to feed
a penalized regression model for the prediction of the final Efron scale value.

2.4.1. Step 1—Conjunctiva Segmentation

In literature, there are several deep learning models proposed to automate the segmen-
tation of eyes’ images (e.g., optical coherence tomography [20], sclera segmentation [21–23],
retinal vessel [24]); nevertheless, we could not find any model focusing on slit lamp images.
These images are theoretically easy to segment since the purpose is to isolate the white-like
part of the image (conjunctiva) from the red-like background (skin, eyelids, eyelashes, and
caruncle), but in reality the differences between these two regions are not uniform in the
different parts of the same image and not as well defined in the color space. An image
thresholding [10] or an image quantization [9] could solve this task in the simplest cases,
but they can not take care of the extremely variability of the samples provided by a clinical
acquisition. There is not a rigid standardized procedure in the image acquisition by a
slit lamp during the clinical acquisition and the “elaboration” of the images is left to the
experience of the clinicians.

In our work, we divide the available image samples into a training (42 patients,
60% of the full set of images, i.e., 168 images) and a validation set (28 patients, 40% of
the full set of images, i.e., 112 images). From the training set, we excluded a subset of
18 images, i.e., 9 patients, as test set for the evaluation of the model performances over the
training procedure. For each image, we collected a manual annotation of the conjunctiva
area performed and validated by 3 experts. The manual annotation set includes a binary
mask of the original image in which only the conjunctiva area is highlighted; this set of
images-masks was used as ground truth for our deep learning model.

The amount of the available samples does not justify the usage of a complex deep
learning architecture with a large amount of parameters to tune. During the research
exploration, we tried several CNN architectures commonly used in segmentation tasks,
starting from DenseNet CNN to the lighter U-Net variants [25,26]. The evaluation of model
performances has to balance both a good performance on the validation set and a greater
ability of extrapolation on new possible samples. We would like to stress that, despite
the above requirements being commonly looked for in any deep learning application,
they are essential for any clinical application, in which the variability of the samples is
extremely high. We remark that even high accuracy scores could still include distortions
and artifacts of clinical significance: the most important result is the clinician’s evaluation,
i.e., the visual segmentation accuracy estimated by experts. All of the predicted images
were carefully evaluated by the experts of the Ophthalmology research group of the IRCCS
S. Orsola University Hospital Ophthalmic Unit, Laboratory for Ocular Surface Analysis
of the University of Bologna and their agreement, jointly with the training numerical
performances, lead us to choose a Mobile U-Net model with skip connection as the best
model able to balance our needs.
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We implemented the Mobile U-Net model using the Tensorflow Python library. The
model was trained for 100 epochs with an RMSProp optimizer (learning rate of 10−4

and decay of 0.995). For each epoch, we monitored the accuracy score, i.e., the average
agreement between the mask produced by the model and the ground truth at pixel level,
and the Intersection-Over-Union (IoU) score, i.e., the area obtained by the union of the
mask produced by the model and the ground truth divided by their intersection area, on
each image of the test set. Since the portion of the image occupied by the conjunctiva area
could be smaller compared to the full image size, the IoU score is a more informative metric
for the evaluation of the model performances since it is robust to unbalances in the sample,
differently from the accuracy score. Our training set includes both nasal and temporal
images for both the patient eyes. This means that we have an intrinsic vertical flip of the
training images. We however performed a large data augmentation procedure to build
a more robust model and to hypothesize the possible variability of the test set. For each
image, we performed a vertical and/or a horizontal flip jointly with a random rotation.

2.4.2. Step 2—Vessels Network Segmentation

The conjunctiva segmentation allows for reducing the region of interest of our analysis
on the most informative area for the redness evaluation. The first step of processing
involves a standardization of the images and the correction of the light dependence due to
uneven illumination of the conjunctiva. In the same image, different parts of the conjunctiva
could have different brightness based on the angle of the incidental light on the conjunctiva
and the aperture of the slit lamp diaphragm. This different brightness produces images
with a shadow component or with a flash glare. The vessels network in the conjunctiva
can thus appear as a brighter or a darker red component, and this can drastically affect
the redness evaluation. The images, in fact, tend to appear with a heterogeneous red
component when the acquisition is performed in low-light situations. At the same time,
the light standardization allows for removing the possible shadows or hyper-intense areas
due to the effect of the flash over the patient’s eyes. This standardization is performed
independently on each channel of the image (R, G, and B), and it involves a median blurring
of the channels followed by a normalization of the difference between the blurred and the
original channel. The resulting standardized image is converted into grayscale before the
application of the next steps.

Starting from the standardized masks, the pipeline performs the vessel segmentation.
The vessels’ network segmentation is a standard task in ophthalmology image processing,
and many studies have already published promising results on this topic [3,9,10,19,27,28].
In our work, we decided to use a customized version of the method proposed in [19], using
a watershed adaptive filter to highlight the network vessel component and to segment
it from the background. After removing the smaller connected components (up to a
predetermined size) to remove noise artifacts, the resulting segmentation is refined using a
GuoHall skeletonizer [29]. In this way, only the backbone (only 1 pixel for each branch) of
the vessels network is selected. In the next steps, we use the backbone network as a mask
for the extraction of the redness features, focusing our analysis on the smallest but most
informative region of the image.

2.4.3. Step 3—Redness Features

The redness measurements are standardly performed on the whole area occupied
by the conjunctiva, despite the most informative section being given by the only vessels
network component. Therefore, for all the features, only the pixels belonging to the vessels
network were included.

RGB Redness

Park et al. propose in [9] a redness measure given by a combination of the RGB
channels. The authors extract this score on the manually segmented conjunctival area
without any preprocessing step, obtaining promising results on the prediction of the
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conjunctival redness. The core assumption behind the relation between this feature and
the conjunctival redness is the perception of the red color into the conjunctiva area: the
mathematical formula tends to emphasize the R intensity using a weighted combination
of the three channels. This starting point is generally true in the major part of slit lamp
images, but it can suffer from the image light exposition: the RGB channels do not respond
in the same way to the image brightness, and this behavior can affect the robustness of
the measure.

In our work, we evaluated the same score using the mask provided by the vessels
network segmentation: in this way, we can focus our evaluation of the redness only in the
most informative area of the conjunctiva, minimizing possible light exposition artifacts.
We also improved this measure applying the preprocessing light standardization. Thus,
the first feature extracted is the redness score given by

score1 =
1
n

n

∑
i=1

2Ri − Gi − Bi
2× (Ri + Gi + Bi)

(1)

where we denote with R, G, B the red, green, and blue channels of the standardized image,
respectively. The n value represents the amount of pixels in the mask produced by the
conjunctival segmentation step.

HSV Redness

A second interesting feature was proposed by Amparo et al. in [8]. The authors
suggest to move from the RGB color space to the more informative HSV one, i.e., the hue,
saturation, and value. This space is more informative than the RGB one since it is capable of
being careful about the different light exposure (saturation). The authors also suggested the
usage of a preprocessing step for the slit lamp images, including a white-balance correction
to overcome possible light exposition issues. Despite their interesting results, they did
not show further results on the dependence of their feature to the same image sampled
in different light conditions. Their measure uses a combination of saturation and hue for
the redness estimation, thus we can preliminarly expect a more robust behavior to image
brightness. In addition, in this case, we applied the same computation for the extraction of
a second score on our standardized image after the vessels network segmentation:

score2 =
1
n

n

∑
i=1

Hi × Si (2)

where H and S represent the hue and saturation intensities of the standardized image, re-
spectively.

Fractal Analysis

A third set of measurements were proposed by Schulze et al. in [10], who performed
a fractal analysis from the vessels segmented in the conjunctiva. Our technique for the
vessels network segmentation is quite different from theirs, but we can, however, apply
fractal analysis for the study of the vessels’ topology. The vessels network can be compared
to a fractal structure and thus analyzed using standard measurements of complex systems
analysis [30–32]. Their evaluation can be very informative from a medical point-of-view,
and it fills an opened gap in the clinical practice. The estimation of the fractal dimension
of the vessels network could be informative of multiple pathologies, since it quantifies
the neo-genesis and the ramification of the vessels in the area of interest. Their relation to
the hyperemia is straightforward since the greater the area occupied by the vessels, the
greater the conjunctival redness. The core assumption in this case is given by the goodness
of the segmentation algorithm used for the vessels network extraction: the algorithm
should be able to identify the vessels network in any light exposition or the measures can
suffer from false positive or missing detections. In particular, we extracted as putative
features the fractal dimension of the vessels network using the box-counting and pixel-
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counting algorithms. Both algorithms are commonly used methods for the analysis of
fractal structures included into images. In our work, we choose a logarithmic set of sizes
for the box counting evaluation, and, for each image, the coefficients estimated from the
linear interpolation between the box-sizes and the counts were used as features (this line
slope is usually referred to as the fractal dimension).

Color Measures

We also computed the averages of the RGB channels {µR, µG, µB} and HSV {µH, µS, µV}
channels of the standardized conjunctival networks, reaching a total of 10 putative features
for the redness estimation. There are intrinsic correlations between these features that need
to be taken into consideration for the subsequent analyses.

2.4.4. Step 4—Regression Pipeline

The initial step of our regression analysis consists of the standardization of the ex-
tracted features. Each feature belongs to a different space/range of values and to combine
their values, and we have to rescale all of them into a common range. We rescaled all the
features using their median values, normalizing according to the 1st and 3rd quantiles,
i.e., a robust scaling algorithm: in this way, we minimize the dependency from possible
outliers. Medians and quantiles were estimated on the training set and then applied to the
test set to avoid cross contaminations.

The processed set of features is then used in a penalized regression model. We used
a penalized ridge regression (or Tikhonov regularization) for the Efron prediction. Ridge
regression is a regularized version of the linear regression in which an extra regularization
term is added to the cost function, penalizing high values of the coefficients of the regression.
In our simulations, we used a penalization coefficient equal to 2.5.

The full set of data was divided into a train/test sets using a shuffled 10-fold cross
validation. The model was trained on a subset (90%) of the available samples, and its
predictions are compared to the ground truth provided by the corresponding test set (10%).

We want to note that, despite the Efron scale admitting only integer values (from 1
to 5) in our dataset, we have a 8% of floating point values: the experts introduce floating
point values when there is no an exact concordance between the patient image and the
template image references. We would stress also that the accordance between multiple
experts in the Efron scale evaluation is generally low since the measure has an intrinsic
subjectivity, and this bounds the best possible predictions of a quantitative model.

3. Results
3.1. Conjunctival Segmentation

The results obtained by our training on the test images are showed in Figure 2a. The
masks obtained by the conjunctival segmentation can be applied to the original images
to select only the region of interest (ROI) for the following analysis. The results showed
in Figure 2b highlight the efficiency of the model in the conjunctiva detection and seg-
mentation. In 100 epochs of training, the model reaches an average accuracy of 0.94 and a
corresponding IoU score of 0.88 on the test set.

The visualization of the results confirms the goodness of the training, showing a good
agreement with the ground truth masks segmented by the experts. Despite the perfor-
mances, the visualization of the produced masks also allows an empirical interpretation
about what the model has learned during the training: in many cases, the ground truth
produced by the experts is “rough”, and it does not take care about the superposition of the
eyelash on the conjunctival surface. The manual segmentation performed by the experts
was also not pixel-perfect, but it is a polygon composed of straight segments and thus
the model could not reach a perfect learning (and neither it is desirable in terms of model
generalization). The developed model is able to better discriminate between the eyelashes
and the conjunctiva showing more accurate masks.
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Figure 2. Results obtained by the trained Mobile U-Net model on the 18 test images. (a) evolution
of the average accuracy and average IoU along the training epochs (100). The IoU score is more
informative given that it is robust to unbalances in the sample, differently from the accuracy score; (b)
example of the results obtained on a test image. On the top-left, the ground truth. On the top-right,
the predicted segmentation. On the bottom-left, the raw (input) image. On the bottom-right, the
resulting ROI of the conjunctival area.

3.2. Vessels Network Segmentation

An example of this processing is provided in Figure 3. In this case, the red component
of the image tends to be uniform along the entire conjunctiva area, making it difficult
to visualize the network of vessels. The image standardization algorithm allows for
better discriminating the vessels from the background, removing the false positive redness
component from the conjunctiva. We use the result of this processing step for both the
vessels network extraction and for the next features’ evaluation, since the color ranges
produced by this step are more robust to the different image expositions. A preliminary
analysis of the results obtained by this approach confirms its efficiency: this processing,
applied on the standardized image, as discussed above, is powerful enough to extract
the most informative vessels from the image. An example of the results obtained by our
preprocessing is showed in Figure 3f.

We performed our analyses on a server grade machine (64 GB RAM memory and 1
CPU i9-9900K, with eight cores) and the proposed pipeline, from the conjunctiva segmen-
tation to the vessels network extraction, took less than 2 min per image.

3.3. Efron Scale Prediction

We processed the dataset of 280 samples using our automated pipeline extracting the
full set of features. In this dataset, we have two images for each eye (nasal and temporal);
thus, we use the average of each feature extracted on the two samples. The full set of
10 features were used for the ridge regression model estimating the correlation between
the ground truth Efron values and the predicted ones. We trained the regression model
using a 10-fold cross validation: in this way, we can ensure that the model predicts the
outcome on a completely novel set of samples. We tuned the pipeline parameters using a
grid search algorithm to better fit the available data. The best model found is able to predict
the correct Efron scale values with a Spearman’s rank correlation coefficient of 0.701 and a
corresponding p-value of 10−22 (ref. Figure 4a). An example of the prediction obtained on
the test set is showed in Figure 5

We apply the same pipeline for 100 different cross validations to test the robustness of
our model. In each iteration, a different 10-fold cross validation is provided to the ridge
regression: in this way, we test the sensitivity of the model to different training sets. The
resulting distribution of Spearman’s rank correlation coefficient (ref. Figure 4b) shows the
robustness of the developed model: the estimated coefficients are centered around a value
of 0.69 with a spread of 0.008.
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Figure 3. Comparison between the raw image and the result of our standardization algorithm.
(a,c) the original image and corresponding enlarged area. In this case, the image acquisition was
performed with an incorrect light exposition, which leads to an unbalanced redness component along
the entire conjunctiva area. It is evident in the enlarged section how the vessel color tends to be very
close to the background, making it their evaluation difficult and creating a false positive redness
component in the conjunctiva. (b,d) the standardized image and corresponding enlarged area. The
standardization algorithm allows for better discriminating the vessels network component from the
red-like background. In the enlarged portion, we can see how the algorithm is able to split the vessels
with the uniform background, despite the latter having a non-negligible redness component; (e) the
vessels network segmentation estimated on the raw image; (f) the vessels network segmentation
estimated on the standardized image. The standardization processing allows for removing the
artifacts (false positive branches) related to the red-like background component.

The developed model uses a combination of the extracted features to find the best
parameters for the regression model. Despite the resulting performances, we evaluate the
informative power of each feature independently. We apply the same cross validation
procedure using each feature singularly one by one: in this way, we can assign to each of
them its informative power given by the associated Spearman’s correlation coefficient. As
expected, not all the features are equally informative, but only three of them are associated
with a Spearman’s correlation coefficient greater than 0.55 (in absolute values). We found
as the most informative feature the score1 (ref. Table 2) with a correlation coefficient of
0.64, immediately followed by the average saturation and average blue channel with 0.61 and
−0.56, respectively. Thus, the results obtained by our predicted model are related to the
informative power of these three features.
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Figure 4. Results of the regression model for the prediction of the Efron scale values, developed
starting from the set of features extracted. The correlation between the ground truth and the predicted
values is estimated using the Spearman’s rank correlation coefficient (ref. plot legend); (a) results
of a single cross validation of the model. We highlight with the dashed line the axes bisector that
corresponds to a perfect prediction. Despite the significance of the correlation found, the model finds
many difficulties with low Efron scale values. We note that the predictions are performed on a set of
data completely independent to the training set; (b) results obtained by the same pipeline on 100
different cross validations. In each iteration, a different 10-fold cross validation was applied for the
estimation of the Spearman’s rank correlation coefficients. The average Spearman’s rank coefficient
found is 0.69 with a standard deviation of 0.008.

Figure 5. Example of the predictions obtained by the regression model on three samples. For each
image, we report the assigned Efron score and our method’s predicted score. We would like to stress
that the predicted scores are floating point numbers and therefore they are more descriptive for the
redness evaluation, ensuring a finer redness grading scale of values.

Table 2. Spearman’s correlation coefficient scores of single features in relation to the Efron grading
scale values, ranked from the highest to the lowest. The analysis of the single feature correlation
highlights an unbalanced informative power in the prediction of the Efron scale values. Only three
features have a correlation coefficient greater than 0.55 (in absolute values).

Feature Spearman’s Correlation

score1 0.642
µS 0.612
µB −0.564
µG −0.505
µH −0.480
score2 0.408
pixel-counting −0.395
µR 0.314
µV 0.267
box-counting −0.113
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4. Discussion

The results obtained on the Efron scale predictions highlight a statistical agreement
between only a small set of extracted features and the grading scores. In particular, we show
the efficiency of some RGB measurements which have statistical significant correlations
with the Efron grading scale values. Their efficiency is justified by their robustness to the
most common issues in the image acquisition given by the light exposition and aperture of
the slit lamp diaphragm.

The best correlation performances are achieved by the measure proposed by Park et
al. (score1): this measure is already known in literature as a feature related to the redness as
much as the blue channel (the blue channel conserves the most informative component
for the discrimination between the white-like conjunctiva area and the red-like vessels
network). It is, however, interesting to notice how the saturation of the segmented vessels
network area shows a not negligible correlation with the redness measure of the Efron
scale. Moreover, the correlation between the image saturation and Efron values is a positive
correlation, implying that the higher is the image exposition to the light with brighter
red color and the higher tends to be the evaluation of the clinicians. The quality of the
image certainly affects the evaluation of the clinicians, and it is quite obvious that, in a low
contrast image, the evaluation of the vessels is harder for human eyes.

The analysis of the single features correlation also explains the apparently low effi-
ciency of the score2: despite the HSV color space being theoretically more robust than the
RGB one and the high correlation between saturation and Efron values, the hue channel
(µH) tends to anti-correlate with the Efron scale. The combination of the HSV channels
proposed by Amparo et al. does not take care about them and thus their score is penalized
in relation to the others.

The lowest predictive powers are achieved by the fractal features: the fractal analysis
of the vessels network seems to be unrelated to the Efron values despite their theoretically
information power in the description of the neo-genesis and ramification of the vessels.
The fractal measures that are independent from the extension of the vessels network
by definition can be seen as informative of the dynamic of the process of neo-genesis.
Therefore, this lack of correlation seems to imply that the vessels growth is not different
from the physiological condition.

The methods to estimate conjunctival redness are usually assessed by evaluating the
agreement of the estimates of a panel of experts. The same set of samples is shown to a
pool (at least two) of experts, and they perform the grading evaluation under the same
experimental conditions. In this way, one can double check the obtained results, comparing
the efficiency of the model against the expert evaluation using the agreement between the
experts as the maximal obtainable correlation: the rationale is that any automated method
can not agree with the opinion of any single expert more than how much two experts can
agree between themselves. In our work, each image was independently evaluated by three
experts. It is important to notice that, despite our automated method not reaching a perfect
prediction, we observed an internal agreement between the experts’ evaluations of at most
0.84 (evaluated as Spearman’s correlation coefficient). In this case, any automated pipeline
trained on this dataset could not achieve a predictive power greater than this value. Any
result higher than this should be regarded as over fitting.

Our results also highlight a non-negligible correlation between the saturation of the
image and the Efron scale values. It is not surprising that a brighter image is more easily
analyzed by the human eye, but the correlation between the brightness of the image color
and the Efron scale values leads us to hypothesize a possible criticality in the clinical
evaluation that can lead to an overestimation of the hyperemia severity by the clinicians.
The proposed pipeline tries to overcome the problems related to image exposure using
the standardization algorithm described above, but further analysis will be required to
completely remove the light dependence from the feature extraction procedure.

The robustness of our pipeline on a set of images sampled with a no-rigid acquisition
protocol confirms its possible usage in a clinical practice as a viable decision support
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system for the ophthalmologists. Our pipeline can help the clinicians in the evaluation
and quantification of the hyperemia scores, providing a reference score given by a fully
automated processing but also intermediate images which better highlight the conjunctival
characteristics. We would like to stress that the entire pipeline is able to perform the
prediction of the Efron values using floating point numbers, allowing a finer scale of
values for the redness estimation. Moreover, the entire pipeline performs its evaluation in
real time, since the most time-consuming task is given by the training procedure which
must be performed once and for all. The proposed pipeline is currently used in the
Ophthalmological Unit of IRCCS S. Orsola University Hospital of Bologna in Italy, and it is
still being perfected to overcome the current limitations of the method. These improvements
will be the subject of future works.
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