1,017 research outputs found

    Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

    Full text link
    We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modifications of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices.Comment: 6 pages, 4 figures, final published versio

    Using Spatial Regression to Model Potentially Toxic Metal (PTM) Mobility Based on Physicochemical Soil Properties

    Get PDF
    Mining processes generate waste rock, tailings, and slag that can increase potentially toxic metal (PTM) concentrations in soils. Un-reclaimed, abandoned mine sites are particularly prone to leaching these contaminants, which may accumulate and pose significant environmental and public health concerns. The characterization and spatial delineation of PTMs in soils is vital for risk assessment and soil reclamation. Bumpus Cove, a once active mining district of eastern Tennessee, is home to at least 47 abandoned, un-reclaimed mines, all permanently closed by the 1950s. This study evaluated soil physicochemical properties, determined the spatial extent of PTMs (Zn, Mn, Cu, Pb, and Cd), and examined the influence of soil properties on PTM distribution in Bumpus Cove, TN. Soil samples (n = 52) were collected from a 0.67 km2 study area containing 6 known abandoned Pb, Zn, and Mn mines at the headwaters of Bumpus Cove Creek. Samples were analyzed for Zn, Mn, Cu, Pb, and Cd by microwave-assisted acid digestion and flame atomic absorption spectrometry (FAAS) (12-1,354 mg/kg Zn, 6-2,574 mg/kg Mn, 1-65 mg/kg Cu, 33-2,271 mg/kg Pb, and 7-40 mg/kg Cd). Of the measured PTMs, only Pb exceeds permissible limits in soils. In addition to the PTM analyses, soil physical (texture, moisture content, and bulk density) and chemical (pH, cation exchange capacity (CEC), and total organic carbon (TOC)) properties were evaluated. Spatially weighted multivariate regression models developed for all PTMs using soil physicochemical properties produced improved results over ordinary least squares (OLS) regression models. Models for Zn (R2 = 0.71) and Pb (R2 = 0.69) retained covariates epH, moisture content, and CEC (Zn), and pH and CEC (Pb). This study will help define PTM concentration and transport and provide a reference for state and local entities responsible for contaminant monitoring in Bumpus Cove, TN

    Saturation Physics in Ultra High Energy Cosmic Rays: Heavy Quark Production

    Get PDF
    In this work we estimate the heavy quark production in the interaction of ultra high energy cosmic rays in the atmosphere, considering that the primary cosmic ray is a proton or a photon. At these energies the saturation momentum Q_{sat}^2 stays above the hard scale \mu_c^2=4m_c^2, implying charm production probing the saturation regime. In particular, we show that the ep HERA data presents a scaling on \tau_c = (Q^2+\mu_c^2)/Q_{sat}^2. We derive our results considering the dipole picture and the Color Glass Condensate formalism, which one shows to be able to describe the heavy quark production in photon-proton and proton-proton collisions. Nuclear effects are considered in computation of cross sections for scattering on air nuclei. Implications on the flux of prompt leptons at the earth are analyzed and a large suppression is predicted.Comment: 18 pages, 10 figures, 2 tables. Version to be published in JHE

    Magnetotunneling Between Two-dimensional Electron Gases in InAs-AlSb-GaSb Heterostructures

    Get PDF
    We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This result is explained quantitatively with a model of the conductance in which the 2D gases have different densities and can tunnel between Landau levels with different quantum indices. When the epitaxial growth conditions of the interfaces are optimized, the zero-bias magnetoconductance shows a single set of oscillations, thus proving that the asymmetry between the two electron gases can be eliminated.Comment: RevTeX format including 4 figures; submit for publicatio

    TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation.

    Get PDF
    The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products - TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) - in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies

    Probing light vector mediators with coherent scattering at future facilities

    Get PDF
    Future experiments dedicated to the detection of Coherent Elastic Neutrino-Nucleus Scattering may be powerful tools in probing light new physics. In this paper we study the sensitivity on light Z' mediators of two proposed experiments: a directional low pressure Time Projection Chamber detector, nu BDX-DRIFT, that will utilize neutrinos produced at the Long Baseline Neutrino Facility, and several possible experiments to be installed at the European Spallation Source. We compare the results obtained with existing limits from fixed-target, accelerator, solar neutrino and reactor experiments. Furthermore, we show that these experiments have the potential to test unexplored regions that, in some case, could explain the anomalous magnetic moment of the muon or peculiar spectral features in the cosmic neutrino spectrum observed by IceCube

    Resistance-based probabilistic design by order statistics for an oil and gas deep-water well casing string affected by wear during kick load

    Get PDF
    Deep-water wells for oil and gas extraction make structural components, such as casing and tubing, work in extremely harsh environmental conditions that accelerate component degradation and increase failure probability. Therefore, it is important to properly design casing strings under these operative circumstances (Baraldi et al., 2012)

    Ultrahigh energy neutrinos and non-linear QCD dynamics

    Full text link
    The ultrahigh energy neutrino-nucleon cross sections are computed taking into account different phenomenological implementations of the non-linear QCD dynamic s. Based on the color dipole framework, the results for the saturation model supplemented by DGLAP evolution as well as for the BFKL formalism in the geometric scaling regime are presented. They are contrasted with recent calculations using NLO DGLAP and unified BFKL-DGLAP formalisms.Comment: 5 pages, 2 figures. Version to be published in Physical Review
    corecore