24 research outputs found
Recommended from our members
The IRI Seasonal Climate Prediction System and the 1997/98 El Niño Event
The International Research Institute for Climate Prediction (IRI) was formed in late 1996 with the aim of fostering the improvement, production, and use of global forecasts of seasonal to interannual climate variability for the explicit benefit of society. The development of the 1997/98 El Niño provided an ideal impetus to the IRI Experimental Forecast Division (IRI EFD) to generate seasonal climate forecasts on an operational basis. In the production of these forecasts an extensive suite of forecasting tools has been developed, and these are described in this paper. An argument is made for the need for a multimodel ensemble approach and for extensive validation of each model's ability to simulate interannual climate variability accurately. The need for global sea surface temperature forecasts is demonstrated. Forecasts of precipitation and air temperature are presented in the form of "net assessments," following the format adopted by the regional consensus forums. During the 1997/98 El Niño,the skill of the net assessments was greater than chance, except over Europe, and in most cases was an improvement over a forecast of persistence of the latest month's climate anomaly
Recommended from our members
Dynamics, stratospheric ozone, and climate change
Dynamics affects the distribution and abundance of stratospheric ozone directly through transport of ozone itself and indirectly through its effect on ozone chemistry via temperature and transport of other chemical species. Dynamical processes must be considered in order to understand past ozone changes, especially in the northern hemisphere where there appears to be significant low-frequency variability which can look “trend-like” on decadal time scales. A major challenge is to quantify the predictable, or deterministic, component of past ozone changes. Over the coming century, changes in climate will affect the expected recovery of ozone. For policy reasons it is important to be able to distinguish and separately attribute the effects of ozone-depleting substances and greenhouse gases on both ozone and climate. While the radiative-chemical effects can be relatively easily identified, this is not so evident for dynamics — yet dynamical changes (e.g., changes in the Brewer-Dobson circulation) could have a first-order effect on ozone over particular regions. Understanding the predictability and robustness of such dynamical changes represents another major challenge. Chemistry-climate models have recently emerged as useful tools for addressing these questions, as they provide a self-consistent representation of dynamical aspects of climate and their coupling to ozone chemistry. We can expect such models to play an increasingly central role in the study of ozone and climate in the future, analogous to the central role of global climate models in the study of tropospheric climate change
Coupled atmosphere–mixed layer ocean response to ocean heat flux convergence along the Kuroshio Current Extension
Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Climate Dynamics 36 (2011): 2295-2312, doi:10.1007/s00382-010-0764-8.The winter response of the coupled atmosphere-ocean mixed layer system to
anomalous geostrophic ocean heat flux convergence in the Kuroshio Extension is
investigated by means of experiments with an atmospheric general circulation model
coupled to an entraining ocean mixed layer model in the extra-tropics. The direct
response consists of positive SST anomalies along the Kuroshio Extension and a
baroclinic (low-level trough and upper-level ridge) circulation anomaly over the North
Pacific. The low-level component of this atmospheric circulation response is weaker in
the case without coupling to an extratropical ocean mixed layer, especially in late winter.
The inclusion of an interactive mixed layer in the tropics modifies the direct coupled
atmospheric response due to a northward displacement of the Pacific Inter-Tropical
Convergence Zone which drives an equivalent barotropic anomalous ridge over the North
Pacific. Although the tropically-driven component of the North Pacific atmospheric
circulation response is comparable to the direct response in terms of sea level pressure
amplitude, it is less important in terms of wind stress curl amplitude due to the mitigating
effect of the relatively broad spatial scale of the tropically-forced atmospheric
teleconnection.We gratefully acknowledge
financial support from NOAA’s Office of Global Programs (grant to C. Deser and Y.-O.
Kwon). Y.-O. Kwon is also supported through the Claudia Heyman Fellowship of the
WHOI Ocean Climate Change Institute
The Teleconnection of El Niño Southern Oscillation to the Stratosphere
ISSN:8755-1209ISSN:0096-1043ISSN:1944-920
A large discontinuity in the mid-twentieth century in observed global-mean surface temperature
Data sets used to monitor the Earth's climate indicate that the surface of the Earth warmed from ~1910 to 1940, cooled slightly from ~1940 to 1970, and then warmed markedly from ~1970 onward. The weak cooling apparent in the middle part of the century has been interpreted in the context of a variety of physical factors, such as atmosphere-ocean interactions and anthropogenic emissions of sulphate aerosols. Here we call attention to a previously overlooked discontinuity in the record at 1945, which is a prominent feature of the cooling trend in the mid-twentieth century. The discontinuity is evident in published versions of the global-mean temperature time series, but stands out more clearly after the data are filtered for the effects of internal climate variability. We argue that the abrupt temperature drop of ~0.3°C in 1945 is the apparent result of uncorrected instrumental biases in the sea surface temperature record. Corrections for the discontinuity are expected to alter the character of mid-twentieth century temperature variability but not estimates of the century-long trend in global-mean temperatures