254 research outputs found

    Comparison of magnetic energy and helicity in coronal jet simulations

    Get PDF
    Context. While non-potential (free) magnetic energy is a necessary element of any active phenomenon in the solar corona, its role as a marker of the trigger of the eruptive process remains elusive. Meanwhile, recent analyses of numerical simulations of solar active events have shown that quantities based on relative magnetic helicity could highlight the eruptive nature of solar magnetic systems. Aims. Based on the unique decomposition of the magnetic field into potential and non-potential components, magnetic energy and helicity can also both be uniquely decomposed into two quantities. Using two 3D magnetohydrodynamics parametric simulations of a configuration that can produce coronal jets, we compare the dynamics of the magnetic energies and of the relative magnetic helicities. Methods. Both simulations share the same initial setup and line-tied bottom-boundary driving profile. However, they differ by the duration of the forcing. In one simulation, the system is driven sufficiently so that a point of no return is passed and the system induces the generation of a helical jet. The generation of the jet is, however, markedly delayed after the end of the driving phase; a relatively long phase of lower-intensity reconnection takes place before the jet is eventually induced. In the other reference simulation, the system is driven during a shorter time, and no jet is produced. Results. As expected, we observe that the jet-producing simulation contains a higher value of non-potential energy and non-potential helicity compared to the non-eruptive system. Focussing on the phase between the end of the driving-phase and the jet generation, we note that magnetic energies remain relatively constant, while magnetic helicities have a noticeable evolution. During this post-driving phase, the ratio of the non-potential to total magnetic energy very slightly decreases while the helicity eruptivity index, which is the ratio of the non-potential helicity to the total relative magnetic helicity, significantly increases. The jet is generated when the system is at the highest value of this helicity eruptivity index. This proxy critically decreases during the jet-generation phase. The free energy also decreases but does not present any peak when the jet is being generated. Conclusions. Our study further strengthens the importance of helicities, and in particular of the helicity eruptivity index, to understand the trigger mechanism of solar eruptive events

    Novel coal gasification process: Improvement of syngas yield and reduction of emissions

    Get PDF
    This article is intended to propose and model an innovative process layout for coal gasification that improves the production of syngas and also reduces the sulfur and CO2emissions. The typical coal gasification process uses Sulfur Recovery Units to convert H2S to sulfur, but these have some disadvantage, e.g low sulfur price, coal charge with low sulfur flow rate, use of Tail Gas Treatment unit. Compared to the Claus process, this solution converts H2S and CO2into syngas (economically appealing), reduces emission of H2S and CO2and allows the use of coal charge with high sulfur flow rate, e.g. 9.5% mol/mol. The novel process takes advantage of a double amine wash, a thermal regenerative furnace and considers the recycle of the acid gases coming from the catalytic reactor to further promote the H2S conversion. In particular, the double amine wash is useful to purify the H2S stream to be sent to the thermal furnace from the syngas and CO2, in order to reduce the reactor inlet flow rate. The regenerative furnace is simulated using a large detailed kinetic scheme to appropriately describe the minor species (among them, pollutants like CS2 and COS). As a result, the recycle appears to substantially reduce the pollutant emissions. In addition, the conversion of the Claus process into the novel process doesn't require any change in the main equipment, just needing for a variation in the layout and the operating conditions

    Magnetic Helicity Evolution and Eruptive Activity in NOAA Active Region 11158

    Get PDF
    Coronal mass ejections are among the Sun’s most energetic activity events yet the physical mechanisms that lead to their occurrence are not yet fully understood. They can drive major space weather impacts at Earth, so knowing why and when these ejections will occur is required for accurate space weather forecasts. In this study we use a 4 day time series of a quantity known as the helicity ratio, ∣H J ∣/∣H V ∣ (helicity of the current-carrying part of the active region field to the total relative magnetic helicity within the volume), which has been computed from nonlinear force-free field extrapolations of NOAA active region 11158. We compare the evolution of ∣H J ∣/∣H V ∣ with the activity produced in the corona of the active region and show this ratio can be used to indicate when the active region is prone to eruption. This occurs when ∣H J ∣/∣H V ∣ exceeds a value of 0.1, as suggested by previous studies. We find the helicity ratio variations to be more pronounced during times of strong flux emergence, collision and reconnection between fields of different bipoles, shearing motions, and reconfiguration of the corona through failed and successful eruptions. When flux emergence, collision, and shearing motions have lessened, the changes in helicity ratio are somewhat subtle despite the occurrence of significant eruptive activity during this time

    Additivity of relative magnetic helicity in finite volumes

    Get PDF
    CONTEXT: Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, in other words that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. AIMS: Progress in understanding the nonadditivity of relative magnetic helicity requires removal of restrictive assumptions in favor of a general formalism that can be used in both theoretical investigations and numerical applications. METHODS: We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. RESULTS: We prove the nonadditivity of relative magnetic helicity in finite volumes in the most general, gauge-invariant formalism, and verify this numerically. We adopt more restrictive assumptions to derive known specific approximations, which yields a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the nonadditivity term in the partition equation is, in general, non-negligible. CONCLUSIONS: The nonadditivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint on the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of nonadditivity on global helicity budgets of complex physical processes

    Biogeographic, Atmospheric, and Climatic Factors Influencing Tree Growth in Mediterranean Aleppo Pine Forests

    Get PDF
    There is a lack of knowledge on how tree species respond to climatic constraints like water shortages and related atmospheric patterns across broad spatial and temporal scales. These assessments are needed to project which populations will better tolerate or respond to global warming across the tree species distribution range. Warmer and drier conditions have been forecasted for the Mediterranean Basin, where Aleppo pine (Pinus halepensisMill.) is the most widely distributed conifer in dry sites. This species shows plastic growth responses to climate, being particularly sensitive to drought. We evaluated how 32 Aleppo pine forests responded to climate during the second half of the 20th century by using dendrochronology. Climatic constraints of radial growth were inferred by fitting the Vaganov-Shashkin (VS-Lite) growth model to ring-width data from our Aleppo pine forest network. Our findings reported that Aleppo pine growth decreased and showed the highest common coherence among trees in dry, continental sites located in southeastern and eastern inland Spain and Algeria. In contrast, growth increased in wetter sites located in northeastern Spain. Overall, across the Aleppo pine network tree growth was enhanced by prior wet winters and cool and wet springs, whilst warm summers were associated with less growth. The relationships between site ring-width chronologies were higher in nearby forests. This explains why Aleppo pine growth was distinctly linked to indices of atmospheric circulation patterns depending on the geographical location of the forests. The western forests were more influenced by moisture and temperature conditions driven by the Western Mediterranean Oscillation (WeMO) and the Northern Atlantic Oscillation (NAO), the southern forests by the East Atlantic (EA) and the august NAO, while the Balearic, Tunisian and northeastern sites by the Arctic Oscillation (AO) and the Scandinavian pattern (SCA). The climatic constraints for Aleppo pine tree growth and its biogeographical variability were well captured by the VS-Lite model. The model performed better in dry and continental sites, showing strong growth coherence between trees and climatic limitations of growth. Further research using similar broad-scale approaches to climate-growth relationships in drought-prone regions deserves more attention

    From Classical Trajectories to Quantum Commutation Relations

    Get PDF
    In describing a dynamical system, the greatest part of the work for a theoretician is to translate experimental data into differential equations. It is desirable for such differential equations to admit a Lagrangian and/or an Hamiltonian description because of the Noether theorem and because they are the starting point for the quantization. As a matter of fact many ambiguities arise in each step of such a reconstruction which must be solved by the ingenuity of the theoretician. In the present work we describe geometric structures emerging in Lagrangian, Hamiltonian and Quantum description of a dynamical system underlining how many of them are not really fixed only by the trajectories observed by the experimentalist.Comment: 25 pages. Comments are welcome

    Integrated microchannel cooling for three-dimensional electronic circuit architectures

    Get PDF
    The semiconductor community is developing three-dimensiona
    corecore