665 research outputs found
Countermodel Construction via Optimal Hypersequent Calculi for Non-normal Modal Logics
International audienceWe develop semantically-oriented calculi for the cube of non-normal modal logics and some deontic extensions. The calculi manipulate hypersequents and have a simple semantic interpretation. Their main feature is that they allow for direct countermodel extraction. Moreover they provide an optimal decision procedure for the respective logics. They also enjoy standard proof-theoretical properties, such as a syntactical proof of cut-admissibility
Functional Liftings of Vectorial Variational Problems with Laplacian Regularization
We propose a functional lifting-based convex relaxation of variational
problems with Laplacian-based second-order regularization. The approach rests
on ideas from the calibration method as well as from sublabel-accurate
continuous multilabeling approaches, and makes these approaches amenable for
variational problems with vectorial data and higher-order regularization, as is
common in image processing applications. We motivate the approach in the
function space setting and prove that, in the special case of absolute
Laplacian regularization, it encompasses the discretization-first
sublabel-accurate continuous multilabeling approach as a special case. We
present a mathematical connection between the lifted and original functional
and discuss possible interpretations of minimizers in the lifted function
space. Finally, we exemplarily apply the proposed approach to 2D image
registration problems.Comment: 12 pages, 3 figures; accepted at the conference "Scale Space and
Variational Methods" in Hofgeismar, Germany 201
Search for the decay
We search for radiative decays into a weakly interacting neutral
particle, namely an invisible particle, using the produced through the
process in a data sample of
decays collected by the BESIII detector
at BEPCII. No significant signal is observed. Using a modified frequentist
method, upper limits on the branching fractions are set under different
assumptions of invisible particle masses up to 1.2 . The upper limit corresponding to an invisible particle with zero mass
is 7.0 at the 90\% confidence level
Precise Measurements of Branching Fractions for Meson Decays to Two Pseudoscalar Mesons
We measure the branching fractions for seven two-body decays to
pseudo-scalar mesons, by analyzing data collected at
GeV with the BESIII detector at the BEPCII collider. The branching fractions
are determined to be ,
,
,
,
,
,
,
where the first uncertainties are statistical, the second are systematic, and
the third are from external input branching fraction of the normalization mode
. Precision of our measurements is significantly improved
compared with that of the current world average values
Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.
Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature
Search for hidden-charm tetraquark with strangeness in
We report a search for a heavier partner of the recently observed
state, denoted as , in the process , based on collision data
collected at the center-of-mass energies of , 4.682 and 4.699
GeV with the BESIII detector. The is of interest as it is
expected to be a candidate for a hidden-charm and open-strange tetraquark. A
partial-reconstruction technique is used to isolate recoil-mass spectra,
which are probed for a potential contribution from (). We find an excess of () candidates with a significance of , after
considering systematic uncertainties, at a mass of . As the data
set is limited in size, the upper limits are evaluated at the 90% confidence
level on the product of the Born cross section and the branching fraction of
, at the three energy points, under different assumptions
of the mass from 4.120 to 4.140 MeV and of the width from
10 to 50 MeV. Under various mass and width assumptions, the upper limits of
are found to lie in the range of ,
and pb at , 4.682 and 4.699 GeV,
respectively. The larger data samples that will be collected in the coming
years will allow a clearer picture to emerge concerning the existence and
nature of the state.Comment: 17 pages, 7 figure
Measurement of the inclusive branching fraction for ψ(3686)→KS 0+anything
Using 5.9 pb−1 of e+e− annihilation data collected at center-of-mass energies from 3.640 to 3.701 GeV with the BESIII detector at the BEPCII Collider, we measure the observed cross sections of e+e−→KS0X (where X=anything). From a fit to these observed cross sections with the sum of continuum and ψ(3686) and J/ψ Breit-Wigner functions and considering initial state radiation and the BEPCII beam energy spread, we obtain for the first time the product of ψ(3686) leptonic width and inclusive decay branching fraction Γψ(3686)eeB(ψ(3686)→KS0X)=(373.8±6.7±20.0) eV, and assuming Γψ(3686)ee is (2.33±0.04) keV from PDG value, we measure B(ψ(3686)→KS0X)=(16.04±0.29±0.90)%, where the first uncertainty is statistical and the second is systematic
- …