
Semi-Supervised Segmentation of Ultrasound Images
Based on Patch Representation and Continuous Min Cut
Anca Ciurte1,2*, Xavier Bresson3,4, Olivier Cuisenaire3,4, Nawal Houhou5, Sergiu Nedevschi1,

Jean-Philippe Thiran2,3, Meritxell Bach Cuadra2,3,4

1 Department of Computer Science, Technical University of Cluj-Napoca, Cluj-Napoca, Romania, 2 Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de
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Abstract

Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation
and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to
succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and
they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for
ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of
target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-
assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous
minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on
clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the
ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed
algorithm performs favorably with the literature.
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Editor: Arrate Muñoz-Barrutia, University of Navarra, Spain

Received February 17, 2014; Accepted June 1, 2014; Published July 10, 2014

Copyright: � 2014 Ciurte et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by PRODOC Project of Technical University of Cluj-Napoca and by the Center for Biomedical Imaging (CIBM) of the Geneva-
Lausanne Universities and EPFL, and the foundations Leenaards and Louis-Jeantet, and by the FNS-205321-141283 and CTI-13741.1 funds. The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: Anca.Ciurte@cs.utcluj.ro

Introduction

Ultrasound (US) imaging provides a high image resolution and

simplicity of use at much lower cost in comparison with other

medical imaging modalities such as Magnetic Resonance imaging

(MRI) or Computer Tomography (CT). These advantages make

ultrasound a main image modality in medicine and its use

becomes of particular interest in areas such echocardiography [1–

3], obstetrics and gynecology [4], breast cancer [5] and

intravascular diseases [6]. Indeed, US imaging is more and more

used for image-guided therapy planning and navigation, and

computer aided diagnosis. To this end, the development of

efficient US image segmentation techniques of biological struc-

tures (e.g. different organs, heart chamber, fetus) or focal diseases

(e.g. tumors, cysts) is needed.

US segmentation is very challenging due to the inherent speckle

and some artifacts like shadows, attenuation and signal dropout.

This often leads to weak (or missing) edges and also to the presence

of fake edges, making standard unsupervised segmentation

methods fail. Indeed, segmentation methods succeed on US

imaging only when making use of application-specific constrains or

priors. Several types of priors have been suggested in the literature

[7]: those coming from time or functional data and those based on

shape or imaging physics. In this work, we segment 2D B-mode US

images without contrast enhancement. In consequence, we will not

discuss the use of time-based constraints from different imaging

frames or functional-based priors provided by contrast agent.

However, such kind of priors could be included in our formulation

if needed.

Anatomical shape priors are powerful for US image segmen-

tation dealing very well with shadows and weak edges and they

have been successfully used for different anatomical structures

segmentation such as the heart [2,3], the prostate [8,9], the breast

[10] or the kidney [11]. These priors can be encoded in the form

of statistical shape models, usually derived from large data set

segmentations, and they are often computationally expensive.

Unfortunately, they are of limited use for pathological cases due to

high variation in structure, shape, size and localization of lesions.

Shape priors can be encoded in a simpler manner as for instance

imposing a smooth boundary [2]. We will have such regularization

in our approach.

Priors can also be related to the imaging physics, i.e. related to

the observed intensities of the ultrasound image. For example, we

consider intensity-based priors or learned texture as specific

parametric intensity models to characterize the observed data. In

this context, two different philosophical branches can be identified:

those that consider speckle as information and those that consider

it as noise. Since the gray level intensities in US images reflect the

tissue density, some approaches use denoising filters in order to
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reduce the speckle structure and smooth the images (e.g. [12]). On

the contrary, other approaches benefit of the texture information

contained by speckle. As proved by Oosterveld et al. [13] by

realistic simulations, the statistical and speckle characteristics of

echographic texture change according to the density and spatial

distribution of scatterers within the resolution cell.

A wide range of image features are used for modeling US

observed data (see [7] for an extended review). Intensity features

are often used by means of analytical models of the gray-level

distribution (Rayleigh distribution being the most used model [4]

but also Exponential, Gamma and Gaussian). Note that all these

models are well-suited for the received signal while, in practice,

clinical ultrasound devices log-compress the signal before visual-

ization [14]. The main drawbacks of these gray-level distribution

models are related to distribution parameter estimation and to its

dependency on the imaging system settings such as dynamic range

and gain. Intensity gradient features can also be used [1].

However, they strongly assume that there are homogeneous

regions and thus, a very low level of speckle noise. Texture features

have also proved to be successful in US segmentation, particularly

statistical patterns of the intensity due to their advantage of being

independent of the imaging system physics [5].

Contribution of this work
We consider in this work an alternative approach for

characterizing the ultrasound data. Rather than using analytical

distribution models or texture patterns to represent ultrasound

images, we make use of graph of intensity patches as image

representation. In contrast with most intensity or texture-based

methods, the use of patches as image features allows us to be more

independent of the imaging system and no assumption on the

echogenicity of the object has to be done. Our choice of patch

feature is also supported by previous works in the literature. Patch

features were first introduced for texture synthesis [15] and image

denoising [16] for natural images. In [17], Coupé et al. extended

the non-local means filter [16] to reduce speckle noise in US

images, by defining a particular similarity measure between

patches. In [18,19], the patch-based approach was also successfully

used for spatio-temporal registration and for motion or/and

elasticity estimation in US image sequences of the heart. As far as

we know, our preliminary work [20], published in 2011, was the

first paper that introduces the use of intensity patches in US

segmentation. Besides, we use the Pearson distance between

patches as it proves to be a robust distance to speckle, as shown by

[17].

Given the graph US image representation, we then address the

segmentation problem with an efficient and interactive extraction

algorithm of the foreground object, where the background cannot

be trivially subtracted. Our segmentation method is thus

fundamentally semi-supervised, that is, initial labels are defined

on the image, acting as soft priors. Interactive soft priors were

introduced in Computer Vision with user-assisted segmentation

algorithms such as Interactive Graph Cuts [21], Lazy Snapping [22]

and GrabCut [23]) and also in Medical Imaging (like CT [24] and

US [12] segmentation. This quick and easy way to interact with

images can provide the priors needed to make our segmentation

accurate, robust and applicable to different kind of targets or

imaging parameters. From the interaction point of view, our

algorithm may be equivalent to a large variety of US segmentation

methods proposed in the literature. Several state-of-the-art

methods [7] require initial clicks or other types of interaction,

like defining a region of interest or much tedious manual training.

Moreover, depending on the application’s specificities, the label

initialization can be automatized, as in [20] for retinoblastoma

segmentation.

Our segmentation method is based on the patch-based

continuous graph cut approach for natural image segmentation

introduced in [25]. Continuous graph cut methods have seen a

rapid development over the recent years [26–32]. These methods

find their theoretical roots in Strang [33] but the interest of

applying them to real-world applications like medical imaging and

computer vision has been triggered only recently. Nevertheless,

continuous graph cut methods are quite attractive and offer new

features that we will discuss in a further section.

A preliminary version of this work was presented in [20]. The

main differences and improvements of the proposed work with

respect to our previous work are as follows. Firstly, we introduce a

new minimization algorithm that speeds up by at least an order of

magnitude our previous optimization algorithm proposed in [20].

Secondly, we perform several tests of the proposed ultrasound

segmentation methodology to identify clinical targets, namely,

prostate, fetus, liver tumors and eye. Eventually, we carry out a

thorough study of the robustness of our segmentation algorithm

with respect to initialization.

As shown in [7], most US segmentation methods are usually

limited to a specific target (as for instance the endocardial border

[2,3,34,35], breast mass [5,36–38], prostate [8,12,39,40], and liver

[41,42]). The major advantage of our segmentation framework, as

regards the state-of-the-art, is its flexibility and easiness to use,

while obtaining equivalent or better accuracy. However, this

prevents us from selecting one approach in the literature for

comparison that would not be equivalent in terms of flexibility. We

will thus focus on one clinical context for method comparison, the

segmentation of the prostate. This is one of the main areas of

application of US in cancer treatment [40]. We have chosen the

most recent, and methodologically close, semi-supervised ap-

proach presented in the literature [12], that makes use also of

graph theory and soft priors using initial labels.

We now summarize the main methodological contributions of

the proposed US segmentation method:

N An efficient representation of US images based on graph of

intensity patches (naturally adapted to any echogenicity and

imaging systems),

N A fast minimization algorithm for the minimum cut problem,

N An easy use of soft priors based on interactive user labels

(unlike hard priors such as shape or temporal constrains),

N A study of accuracy and reproducibility of our algorithm with

respect to different initial labels and users;

and the main application-oriented contributions are:

N A flexible framework, applicable to different US segmentation

problems (eye, liver, prostate and fetus),

N A high accuracy of segmentation results as compared to

manual delineations of expert raters, with mean Dice values

around 94% in all data sets.

A related work on ultrasound image segmentation were recently

introduced in [43,44] in the context of echocardiographic

sequences. This work also promotes the use of intensity patches

for ultrasound segmentation. More precisely, the authors of

[43,44] define a sophisticated image representation model with

multiscale signal analysis and sparse coding technology, which

make the image representation rich but also time-consuming. We

directly use image patches as image representation and show that

this simple image representation is quite flexible and accurate to
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deal with multiple segmentation scenarios. Besides, [43,44] make

use of the level set method (LSM) as segmentation method. The

LSM is a PDE-based segmentation technique, which speed is

limited by the Courant-Friedrichs-Lewy (CFL)’s condition. Dis-

crete and continuous graph cut techniques (like the one introduced

in this work) are more recent segmentation techniques and are not

limited by the CFL condition, thus faster than the LSM (at least by

an order of magnitude).

The proposed paper is organized as follows. In the first section,

our mathematical framework and minimization scheme are

presented. In the second section, the parameter setting and

datasets are introduced. In the third section, we study the

accuracy, repeatability and computational speed with respect to

the initialization step. Then, quantitative results are presented for

liver, eye tumors, fetal head estimation, and prostate. Eventually, a

discussion is presented in the last section.

Methodology

The general block diagram of the proposed US segmentation

method is shown in Figure 1. With a given US image as an input,

the method first models the image with a graph representation of

patches; next, the user provides markers inside (and outside, if

needed) the object as initialization, serving as method initializa-

tion; finally, the novel numerical scheme for the minimization

process is applied. Note that, in practice, if the segmentation result

is not satisfying, our framework offer the possibility to re-initialize

the labels and segment again, without re-computing the image

modeling step. We will denote our new fast Patch-based

Continuous Min-Cut segmentation by fP-CMC to distinguish it

from our previous version P-CMC in [20].

Modeling of US images
Let an image I be defined as a vector in RN where N is the

number of pixels in the image. In this work, we represent US

images as a graph of image patches. Therefore we introduce a

graph G~(V ,E, W ), where the set V~fx1,:::,xNg contains the

nodes of the graph, the set E contains the edges (i.e. the

connections between the nodes) and W~fw(xi,xj), V(xi,xj)[Eg is

the weight matrix that encodes the similarity between two points

(w(xi,xj) is small when xi is different from xj and w(xi,xj) is large

when xi is similar to xj ). Each node xi of the graph G represents a

pixel in the image I : The following graph weight is considered:

w(xi,xj)~
exp {

d(F (xi),F(xj))
s2

� �

0

for xj[N a(xi)

otherwise

8<
: , ð1Þ

where d(F (xi),F (xj)) expresses the proximity between the image

descriptors located at xi and xj , N a(xi) is a neighborhood window

centered at xi of size a|a, and the parameter s is the scaling

parameter of the weight matrix (using a standard Gaussian kernel

with 0-mean and variance s2). In our case, the image descriptors

F (xi) and F (xj) are b|b image patches centered at xi and xj ,

respectively. Note that the proposed segmentation framework is

flexible enough to support any types of image descriptor. A

standard distance d that measures the similarity between image

patches is the ‘2 norm, a.k.a. the mean square difference, as used

in [25] for natural image segmentation. Our patch feature is more

adapted for US image segmentation than most texture descriptors

used in the literature in several ways: it does not need multiple

resolution characterization, it does not need any adjustment for

ultrasound imaging (except from the patch size that can be easily

set), it has no trouble in segmenting small areas (as some texture-

based methods do) and, it is extremely easy to be computed.

Speckle model and Pearson distance
In the context of US imaging, patch distance is hard and critical

to define. We need to consider the complex image formation of the

US images such as local correlation due to periodic arrangements

of scatterers and finite beam width, envelop detection and

logarithm amplification of radio-frequency signals, and additive

Gaussian noise of sensors. Consequently, we choose the following

speckle model, that was proved in [45] to fit well the log-

compressed US images:

I(x)~~II(x)z

ffiffiffiffiffiffiffiffiffi
~II(x)

q
g(x), ð2Þ

where ~II is the original image, I is the observed image and

g*N(0,s2) is a Gaussian noise. Thus, for each pixel x can be

made the assumption that

I(x)D~II(x)*N(~II(x),~II(x)s2): ð3Þ

An extensive study was performed by Coupé et al. [17] that

proved the higher performance of the Pearson distance against the

L2 norm to measure the similarities between patches in US

images. Thus, we choose to use the Pearson distance between

patches for segmentation since it is better adapted to the speckle:

d(F (xi),F (xj))~
1

2

XB

k~1

(Fk(xi){Fk(xj))
2

Fk(xj)
, ð4Þ

where F (x)~(F1(x), . . . ,FB(x))[RB, where B~b|b is the

Figure 1. Our segmentation framework.
doi:10.1371/journal.pone.0100972.g001
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number of pixels in the patch F centered at x and Fk(x) is the

intensity of kth element of the patch.

Segmentation model
Continuous graph cut model. An efficient approach to

solve the US segmentation problem is to cast the problem as a

continuous graph partitioning problem such as [25,33]. In this work,

we design a continuous graph cut model to carry out the US

segmentation task with soft label priors.

Continuous graph cut methods, such as see [26–32], have seen a

rapid development in the recent years based on new attractive

properties. Different from discrete graph cut methods such as

[21,23,46,47], which are generaly based on combinatorial

optimization techniques, continuous graph cut techniques are

fundamentally different: they are built on continuous tools like

elliptic Partial Differential Equation (PDEs), variational methods

and continuous convex optimization techniques like augmented

Lagrangian, Uzawa-type primal-dual, iterative shrinkage tech-

niques, etc. Mathematical fields like Functional Analysis offer

strong tools to analyze the well-posedness of these continuous

graph cut techniques. The main advantages of the continuous

formulation of the graph cut methods are 1) sub-pixel accuracy, 2)

easy to code (a few lines of Matlab) and 3) easy to parallelize with

significant speedups.

Let us now introduce our continuous graph cut methodology,

which benefits from these mentioned new features. Graph

partition methods aim at segmenting a graph V into two subsets,

A and Ac, such that A|Ac~V , A\Ac~06 and the inter-

similarity between A and Ac being minimized. Partitioning a

graph into two sets A and Ac can be achieved by minimizing the

cut operator defined as:

cut(A,Ac)~
X

xi[A, xj[Ac

w(xi,xj), ð5Þ

which is equivalent to:

cut(A,Ac)~
X

xi , xj[V

w(xi,xj)uA(xi)uA(xj), ð6Þ

when uA is an indicator function of the set A. More specifically, we have

uA~(uA(x1),:::,uA(xN ))[RN with uA(xi) is the ith element of the

vector uA and N is the number of pixels in the image. Function uA

is an indicator function of the set A when uA(x)~1 for x[A and

uA(x)~0 for x[Ac: It is known that minimizing the cut operator

(5) is equivalent to minimizing the graph-based H1 norm as long

as binary indicators, i.e. uA[f0,1g, are considered [48]. The

graph-based H1 norm is defined as:

H1
w(uA)~

X
xi[V

j+wuA(xi)j2

~
1

2

X
xi , xj[V

w(xi,xj)(uA(xi){uA(xj))
2~cut(A,Ac)

for uA(x)~
1 Vx[A

0 Vx[Ac

�
ð7Þ

Observe that the weighted graph Laplacian naturally corre-

sponds to a finite difference approximation of the continuous

Laplacian operator and it also corresponds to the non-local

operator of diffusion on graph.

Segmentation with labels. The proposed segmentation

algorithm aims at minimizing the cut operator (or graph-based

H1 norm) given some labels to identify the objects of interest and

the background. The object labels lO are defined as u(x)~1 for

x[lO and the background labels lB are defined as u(x)~0 for x[lB.

We now formulate the segmentation method as a discrete

minimization problem:

min
u[f0, 1g

H1
w(u) s:t: u(x)~

1 Vx[lO

0 Vx[lB

�
, ð8Þ

where H1
w(u) is defined in (7) and lO, lB are provided by the user.

As Shi and Malik observed in [48], minimizing the cut can favor

small sets. An easy way to overcome this issue, while smoothing the

irregularities along the cut boundary, is to use the total variation

(TV) norm (i.e. the ‘1 norm of the gradient) as follows:

min
u[f0, 1g

H1
w(u)zb TV (u) s:t: u(x)~

1 Vx[lO

0 Vx[lB

�
, ð9Þ

with bw0, TV (u)~
P

xi[V D+u(xi)D~
P

xi[V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Lxu)2z(Lyu)2

q
where Lx, Ly are the discrete spatial derivative operators in the

x,y-directions. The discrete minimization problem (9) is a

combinatorial problem difficult to solve because the set of

minimization is the binary function (u[f0,1g) which is not convex.

The natural approach is to relax the binary constraint to the

closest convex set which is naturally u[½0,1�. We thus consider the

following continuous minimization problem:

min
u[½0, 1�

H1
w(u)zb TV (u) s:t: u(x)~

1 Vx[lO

0 Vx[lB

�
, bw0, ð10Þ

which is convex, therefore providing a unique solution for any

initial condition. Another nice consequence of (10) is the

opportunity to develop efficient continuous minimization schemes,

based on recent development for ‘1 optimization (for the

compressed sensing field). The proposed segmentation model (9)

was already introduced in [25] (based on [24]). However, we will

present in the next section a novel and (much) faster minimization

algorithm to solve (10).

Efficient minimization algorithm
This section introduces a fast minimization algorithm for (10)

based on augmented Lagrangian method and splitting technique

such as [49–53]. The minimization problem (10) is equivalent to

(splitting step):

min
u: V?½0,1�

v: V?R

q: V?R2

X
xi[V

j+wu(xi)j2zb
X
xi[V

jq(xi)j

s:t:

u~v

q~+v

u(xi)~1 Vxi[lO, u(xi)~0 Vxi[lB

8>><
>>:

: ð11Þ

Adding new variables by a splitting step is a standard approach

that can solve a difficult minimization problem by equivalently
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solving easier sub-minimization problems. Indeed, the constrained

minimization problem (11) can be solved by the following iterative

unconstrained minimization problems (augmented Lagrangian

step):

(ukz1,vkz1,qkz1)~ arg min
u[½0,1�,v,q

P
xi

D+wuD2zb
P

xi
DqD

z Slk
1 ,u{vTz

r1
2 Eu{vE2

2

z Slk
2 ,q{+vTz

r2
2

Eq{+vE2
2

lkz1
1 ~lk

1zr1(ukz1{vkz1)

lkz1
2 ~lk

2zr2(qkz1{+vkz1)

8>>>>>>>>><
>>>>>>>>>:

s:t:
u(xi)~1 Vxi[lO

u(xi)~0 Vxi[lB

�
,

ð12Þ

where :j jj j22 and S:,:T are the standard l2 norm and scalar

product and r1,r2w0: Then, we consider the solution of the three

sub-minimization problems in (12). The first sub-minimization

problem is:

min
u[ 0,1½ �

u~ xið Þ~1 Vxi[lO

u~ xið Þ~0 Vxi[lB

X
xi

+wuj j2z r1

2

X
xi

u{ v{
l1

r1

� �� �2

,ð13Þ

The Euler-Lagrange equation of (13) is:

{Dwuzr1 u{ v{
l1

r1

� �� �
~0,

({Dwzr1)u~r1v{l1, ð14Þ

where {Dw is the graph Laplacian. The linear system of equations

(14) can be solved efficiently with a conjugate gradient method

(with e.g. Matlab). Then, the constraints u[½0,1� and

u(xi)~1 Vxi[lO, u(xi)~0 Vxi[lB are simply imposed to the

solution of (14). The second sub-minimization problem to solve is:

min
v

r1

2

X
xi

v{ uz
l1

r1

� �� �2

z
r2

2

X
xi

D+v{ qz
l2

r2

� �
D2: ð15Þ

The Euler-Lagrange equation of (15) is:

r1 v{ uz
l1

r1

� �� �
{r2div +v{ qz

l2

r2

� �� �
~0,

({r2Dzr1)v~{r2div qz
l2

r2

� �
zr1 uz

l1

r1

� �
, ð16Þ

which can be solved quickly with fast Fourier transform (FFT) or

discrete cosine transform (DCT) depending on the boundary

condition. The third and last sub-minimization problem is:

min
q

b
X

xi

DqDz
r2

2

X
xi

Dq{ +v{
l2

r2

� �
D2, ð17Þ

which solution is given by soft-thresholding [54]:

q~ max DeD{
b

r2
,0

� �
e

DeD
, with e~+v{

l2

r2
: ð18Þ

The pseudo-code is given in Table 1. to summarize the

proposed algorithm. Finally, the stopping condition is chosen to be

Eukz1{ukE2
2vE and E~10{6 in all experiments.

Parameter setting
A detailed study of the parameters a, b and s has previously

been done in the context of image denoising for natural [55] and

ultrasound images [17]. We briefly re-visit here after the

parameter setting in the context of B-mode US segmentation.

Searching window size (a) - It has a great impact on the

computational time. The size of searching window is also related

to the ‘‘non-local character’’ of the method, since the similar

patches are chosen inside this window and not only from the

nearest neighbors.

Patch size (b) - The patch size is known to be related to the

texture pattern size and to the target object scale [17], [55]. In

ultrasound, texture pattern is provided by speckle. High values of b
imply an increased computational time of weighted matrix w and

the segmentation becomes coarser and a loss of details is noticed.

Thus, we set b~3 to ensure the highest precision and a fast

computation [56].

Scaling parameter (s) - It stands for the typical distance between

similar patches, which depends on the noise level [55]. For the

proposed speckle model, according to Eq. (3), we have a level of

noise equal to ~II(x)s2. Thus, the selection of s parameter depends

on the distribution of the gray levels inside the reference patch

(~II(x)). That implies that s also depends on speckle characteristics

such as speckle size and if it is fully developed or not. Based on the

same assumption defined in Eq. (3), the level of noise ~II(x)s2 has a

high variation because of the speckle appearance. This leads to a

low power of discrimination between two different tissues with

close density properties (meaning a low contrast in US image). A

value of s~4e{3+3e{3 performs goods results in case of US

images, with a higher sensitivity for the mentioned cases of tissues

with close density properties.

Regularization weight (b) - It controls the smoothness of the

contour and eliminates the misclassification of small subsets of

pixels resulted by the min-cut algorithm. Optimal results in

ultrasound segmentation are performed for b values between

Table 1. Algorithm 1.

Initialization: uk~0,vk~0,qk~0~0

While Eukz1{ukE2
2§E) do

Compute: ukz1 with Eq. (14)

Constrain: ukz1[½0,1� and ukz1(xi)~1 Vxi[lO , ukz1(xi)~0 Vxi[lB

Compute: vkz1 with Eq. (16)

Compute: qkz1 with Eq. (18)

Update:

lkz1
1 ~lk

1zr1(ukz1{vkz1)

lkz1
2 ~lk

2zr2(qkz1{+vkz1)

end while

Fast optimization scheme for US image segmentation
doi:10.1371/journal.pone.0100972.t001

ð12Þ
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1e{4 and 1e{1. Larger b value, smoother the contour is. The

sub-parameters r1 and r2 occurred in the augmented Lagrangian

step (Eq. 12) are both fixed to 0:5.

For all the tests and clinical applications presented in this paper

we used the following setting: a~5, b~3, s~0:004 and b~0:01.

Data sets
Our data set contain a wide variety of ultrasound images in

order to proof its flexibility and performance for different imaging

systems, image resolution, speckle size and targets. It contains a

total number of 78 images from which 20 ophthalmic, 30 liver, 22

fetal and 6 prostate images. Table 2 summarize the characteristics

of each data set. Besides the US images, we dispose of manual

delineation performed by medical experts for the ophthalmic, liver

and prostate data sets and of manual biometric measurements for

the fetal data set, which were used as ground truth in our tests.

Ethics Statement
The patient information from all data used in our study was

anonymized and de-identied by physicians prior to our analysis. All

studies presented are approved by the corresponding committee/

institutional review board: Switzerland (Cantonal Research Ethics

Committee of Vaud), France (Comite de Protection des Personnes),

Romania (local Ethical Committee of the University of Medicine

and Pharmacy Cluj-Napoca) and Canada (Health Science Research

Ethics Board at Western University).

Opthalmic imaging
Ultrasound is still in its early years as regards ophthalmology.

However, its use is constantly increasing [57,58] for diagnosis,

planning, therapy and follow up of treatments. We present the

segmentation of B-scan US of the retinoblastoma. The clinical

value of this work is related to a larger project that aims at

improving the radiotherapy planning and treatment of retinoblas-

toma in childhood by fusion of CT, ultrasound and fundus of

photograph [59]. Our clinical eye data set contains 20 ophthalmic

US images which are 2D slices of the 3D volumes from 6 eyes with

retinoblastoma (including both calcified and non calcified tumors).

US eye images were acquired at Jules Gonin Hospital, Lausanne,

Switzerland with Ophthalmic Technologies Inc. (OTI), having an

isotropic resolution of 0:1|0:1 mm2 and image size of 206|217
pixels.

Liver
Liver ultrasound aims at finding abnormalities, such as scarring

(cirrhosis), masses (both cancer and non cancer) and blockage of

the blood vessels. These findings help determine the diagnosis and

therapy and also whether the patient is good or not as transplant

candidate. In clinical practice, liver diagnosis requires additional

examination with other invasive methods like biopsies, with the

associated morbidity and mortality risk. Therefore, the automated

segmentation of ultrasound images would provide a reliable non-

invasive and quantitative approach in diagnosing liver diseases.

We will present the lesion segmentation of US liver imaging

from 15 different patients diagnosed with hepatocarcinoma

(HCC). These application does not aim at illustrating any clinical

value but a quantitative validation thanks to the available manual

delineations. The US liver images were acquired at 3rd Medical

Clinic, Cluj-Napoca, Romania using Logiq7 system at a frequency

of 5:5MHz, with isotropic resolution of 0:4|0:4 mm2 (depth~16

cm) and 0:2|0:2 mm2 (depth~8 cm) respectively and image size

of 640|480 pixels. The data set contains two images per patient,

one for each resolution, summing up a number of 30 images.
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Fetal imaging
Ultrasound imaging is the gold standard modality for explora-

tion, biometric measurements and diagnosis in fetal imaging. In

this context, the development of efficient US image segmentation

techniques of biological structures such as the head, femur or

abdomen of the fetus are crucial towards a high quality perinatal

follow up and diagnosis. Here we aim at segmenting the head of

the fetus to estimate later on the head circumference (HC) as an

indirect measure of fetal growth. Our data set contains 22 US

images from 22 different fetuses ranging from 24 to 35 weeks of

gestational age (GA). Images were acquired in clinical practice at

Hôpital Femme Mère Enfant, Lyon, France with Siemens Medical

Systems at 2:0{3:6M Hz with spatial resolution of isotropic

pixels between 0:22 to 0:33mm. Let us note that only four fetuses

can be considered as healthy while the rest are suspected of

developmental brain delay. Inner head circumference computed

by expert radiologist will be used as gold standard. Our previous

method P-CMC [20] was evaluated on a different dataset to

estimate the outer HC in [60].

Prostate
Transrectal ultrasound (TRUS) is a key tool for prostate cancer

diagnosis. Prostate volumes and boundaries are essential biomark-

ers in the diagnosis, treatment, and follow up of prostate cancer

[7]. This has encourage many researches to develop segmentation

tools for prostate boundary detection [40]. The testing data set

contains 6 prostate US images, the ones introduced and used for

tests in [12].

Let us note that the software and data set for testing presented in

this paper will be made publicly available at http://www.unil.ch/

mial/page86599.html website upon acceptance of the manuscript.

Results

Method evaluation
The overlap measures that we use to estimate the agreement

between the segmentation result and the ground truth (GT) are:

Dice coefficient metric (DCM) [61] and area overlap (AO, or

accuracy overlap) [12]. They are defined as follows:

DCM~
2DSeg\GT D
DSegDzDGT D

,

where by Seg and GT we refer to the set of segmented,

respectively ground truth points, and

Figure 2. Different types of initialization using basic shapes like lines or ellipses, and free hand initialization. Yellow and light blue
correspond to foreground and background labels respectively.
doi:10.1371/journal.pone.0100972.g002

Figure 3. Box-plot of inter-user initialization variability and of the robustness with respect to different labels: central red mark is the
median, edges of the box are the 25th and 75th percentiles, whiskers extend to extreme values, and outliers are plotted by a red cross.
doi:10.1371/journal.pone.0100972.g003
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AO~
DTPD

DTPDzDFN DzDFPD
|100,

By D:D we denote the set cardinal and TP, FN and FP are the true

positive, false negative and false positive sets respectively. Added to

overlap measures for segmentation agreement, speed in number of

iterations and computational time are also shown. Our algorithm

is implemented in Matlab and it was tested on an INTEL Core 2

Duo, 2.66 GHz, 2 GB of RAM.

Robustness to initialization
Our segmentation method is designed in an interactive

framework which allows the user to easily and quickly initialize

the algorithm for any target of interest. Let us remind that,

depending on the specific application, the initialization process can

be easily automatized [20]. However, we promote here some

initial user interaction in favor of a great gain in flexibility: we will

be able to segment many different targets. Having some initial

interaction is not new in US segmentation. A large range of state-

of-the-art methods must define initial clicks and even heavier

interactions (please refer to Table II and III in [7] as regards

interaction type for breast and prostate segmentation respectively).

In this sense, our algorithm is not different from algorithms in the

literature.

To this end, we present a robustness study with different type of

initializations: simple straight lines, one click-drag and drop for

generating predefined shapes like ellipses or circles, or freely

drawing scribes (as they have prove to be largely used in

interactive segmentation applications [47,62]. The initialization

requires the selection of at least one object, and, optionally, of one

or more background areas.

We test the robustness of our method for both eye and prostate

imaging. Some examples of different types of initial labels (lines,

ellipses and free hand) are shown in Figure 2. Moreover, three

different users have drawn the initial labels to study also the inter-

user variability. Results are shown in the boxplots of Figure 3. For

a given user, DCM is in average 0:93 for both eye and prostate

imaging with +0:2 and +0:3 of variance respectively. Therefore,

this demonstrate a high robustness as regards different types of

initializations. Moreover, inter-user variability for a given label is

also highly robust (around 0:925+0:3). We applied the Wilcoxon

two-sided rank sum test, a non-parametric alternative to paired-

Figure 4. Eye tumor segmentation: ground truth is in transparent green, fP-CMC segmentation is in red, foreground and background labels are in
yellow and light blue respectively.
doi:10.1371/journal.pone.0100972.g004

Table 3. Quantitatively evaluation of retinoblastoma segmentation against expert delineations used as ground truth.

Figure 4(a) 4(b) 4(c) 4(d) 4(e) 4(f)

DCM P-CMC 0.95 0.93 0.94 0.89 0.95 0.72

fP-CMC 0.96 0.95 0.95 0.93 0.95 0.90

Iterations P-CMC 6217 4529 3031 3914 4287 1241

fP-CMC 46 50 52 32 33 29

Convergence
Time (s)

P-CMC 75 55 39 42 130 14

fP-CMC 18 21 21 13 13 12

doi:10.1371/journal.pone.0100972.t003
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student test since it does not make any assumptions regarding the

distributions of the data population, on DCM statistics. All tests

accepted the null hypothesis at 5% significance level, that is,

differences between each boxplot are not statistically significant.

Therefore we can conclude that all types of initialization are valid

for segmentation and that results are repeatable by different users.

Additional study concerning the spatial filling of the initial labels

can be found in File S1 attached to the manuscript.

Validation
Quantitative assessment is presented for the eye, the liver, the

prostate, and the fetus. The color code used in figures 4, 5, 7 and 9

is as follows: foreground and background labels are in yellow and

light blue respectively, fP-CMC segmentation is in solid red

contour, and ground truth is in transparent green (except for

figure 7 where ground truth segmentation is not available, only the

fetal head circumference value).

Segmentation of eye tumors. Segmentation results of US

image segmentation are shown in Figure 4 (input images in the

first line, segmentation results in the second one and zoom on the

results in the third one). The Dice coefficient metric and

computational time, in comparison with the previous P-CMC

method [20], are presented in Table 3. DCM is 0:94 with a

standard deviation of 0:02 was obtained in average for the 8
images of the eye data set. The speed-up of the novel method is

clear visible from the reduced time of convergence and number of

iterations presented. We measure the intra- and inter-observer

variability of two raters that manually delineated the ground truth

retinoblastoma. The inter-observer Dice average and variance is of

0:88+0:22 and the intra-observer variability is of 0:91+0:06. The

fP-CMC Dice average of 0:93+0:02 is good as compared to the

variability measurements.

Segmentation of liver tumors. A region of interest of

250|250 was defined from the original images (first row of

Figure 5). Segmentation results are shown in second row of

Figure 5 for different resolutions: (a) to (c) have a resolution of

0:4|0:4 mm2 and (d) to (f) have a resolution of 0:2|0:2 mm2.

Similar results were obtained for all images in the US liver data

set. Overlap measure and computational time are presented in

Table 4. The average DCM of the 30 images of the liver data set is

0:9397 with standard deviation of 0:01. This performance proofs a

good accuracy and high robustness for these challenging imaging.

Moreover, as regards our previous method, the number of

iterations till convergence and the computational time are reduced

significantly, by a factor of 1000 and 15 respectively. A box-plot

representation of the DCM is visualized in Figure 6, where the first

box corresponds to the US liver data set of depth~16cm and the

second one to the data set of depth~8cm. The same accuracy is

almost reached for both image resolutions but slightly higher

variability is obtained for acquisitions at 8cm depth.

Fetal head segmentation. We proceed to define two elliptic

labels inside and outside the fetus head (see yellow and cyan

contours in Fig. 7) by a mouse click (press, drag and release). Then,

the head is segmented with the fP-CMC (red contour in Fig. 7).

From there, the axis of elongation of the obtained binary

segmentation is computed with the following formulation [63]:

tan (2Wi)~2

P
r

P
c (r{ri)(c{ci)Ii(r,c)P

r

P
c (c{ci)

2Ii(r,c){
P

r

P
c (r{ri)

2Ii(r,c)
, ð19Þ

Figure 5. Liver tumor segmentation. Image resolution is 0:4|0:4mm2 for (a), (b) and (c), and 0:2|0:2mm2 for (d), (e) and (f). Ground truth is in
transparent green, fP-CMC segmentation is in red, foreground and background labels are in yellow and light blue respectively.
doi:10.1371/journal.pone.0100972.g005

Table 4. Quantitatively evaluation of the liver tumors against manual segmentation by an expert radiologist as ground truth.

Figure 5(a) 5(b) 5(c) 5(d) 5(e) 5(f)

DCM P-CMC 0.94 0.95 0.94 0.93 0.91 0.92

fP-CMC 0.96 0.95 0.95 0.95 0.93 0.95

Iterations P-CMC 17566 11786 10103 19163 17732 19605

fP-CMC 48 85 80 48 43 84

Convergence Time (s) P-CMC 300 245 359 379 471 281

fP-CMC 20 35 33 20 18 35

doi:10.1371/journal.pone.0100972.t004
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where r, c corresponds to the rows and columns in the binary

image I (1- for the object and 0 for the background) and c, r are

the coordinates for the centers of mass. The axis of elongation will

correspond to Occipito-Frontal Diameter (OFD) measure, and

then Biparietal Diameter (BPD) is computed for the angle

(Wz900), for the same center of mass. Finally, HC is computed

from the BPD and OFD measurements using the expression [64]:

HC~p(BPDzOFD)=2: ð20Þ

Some visual segmentation results are shown in Figure 7 with

their corresponding quantitative measures as in Table 5. Estimat-

ed HC metric as compared with radiologist computation for all

images is plotted in Figure 8 in form of Bland-Altman plot [64]

where the error in the HC estimation (difference in mm) is

represented as a function of the estimated HC measure (in mm).

Further, we compare our estimation errors with the inter-user

variability of HC measurement reported in previous studies [65].

Sarris et al [65] recently presented, among other fetal ultrasound

measurements, a variability study of HC measurements (in mm)

between 3 different users over 175 images from 140 fetuses

(ranging from 14 to 41 weeks of gestational age). They reported an

average variability of 0:9mm and the 95% confidence intervals at

z13mm and {11:1mm. Our average error is smaller (0:03mm)

and our error distribution fall within those confidence interval. In

this sense, we can say that our estimated HC is equivalent to the

one measured by hand by the radiologist.

Segmentation of prostate. In this application we compare

our fP-CMC segmentation to previous published works [12] that

are based on graph cut segmentation with a fuzzy interference

system (GC-FIS). Both fP-CMC and GC-FIS methodologies are

comparable in terms of interactivity and of semi-supervision with

labels within a graph-cut based segmentation framework. How-

ever, contrary to our philosophy of considering speckle as image

information, GC-FIS assumes a preprocessing step for image de-

noising in order to reduce the speckle noise by using ‘stick filter’

and smooths the image. The user interaction in GC-FIS differs a

lot of ours indeed. In GC-FIS, few points lying on the object

contour must be selected first. These points are further used to

generate the contours for the inside and the outside labels, being

Figure 7. Fetal head segmentation: fP-CMC segmentation is in red, initial labels (ellipses) are in yellow and light blue for object and background,
respectively.
doi:10.1371/journal.pone.0100972.g007

Figure 6. Box-plots of B-mode segmentations: (a) DCM values for liver tumors with a depth of 8 (Liver_8) and 16 (Liver_16), eye tumors and
prostate; (b) Area overlap (AO) values in prostate segmentation of fP-CMC (using two different types of initial labels: init 1 and init2) vs. GC-FIS [12].
doi:10.1371/journal.pone.0100972.g006
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automatically defined in the normal direction and at a certain

distance from the object contour. Segmentation is performed next,

using the interactive graph-cut approach proposed by Boykov and

Jolly in [21]. Please note that GC-FIS is thus based on a discrete

optimization approach, while we have a continuous formulation.

Finally, the contour is refined in a post processing step using a FIS,

where each point is evaluated and marked as weak or strong

boundary points. The misclassified (weak) points are used next to

add more appropriate hard constraints and to further re-perform

the segmentation.

For sake of comparison we force us to define labels as close as

possible as defined by GC-FIS. Accordingly, in Fig. 9, for the initial

labels shown in the 1st row we obtain the segmentation results as

shown in the 2nd row. We will denote these results by fP-CMC-L1.

Rather than using these complex labels, we will run our algorithm

with much simple and intuitive initialization (as performed in all

previous clinical applications), by straight lines for the foreground

and without background labels. Results are denoted by fP-CMC-

L2 and shown in 3th row of Fig. 9.

In Table 6 we present the quantitative results for both methods

in terms of area overlap (AO). Results with fP-CMC-L1 are very

close to GC-FIS or slightly better: an overall accuracy average of

90:06 of fP-CMC-L1 against 88:28 obtained with GC-FIS. We have

considerably reduced the variability of the results, proving again

the robustness of the fP-CMC (see boxplots in Fig. 6). Results with

fP-CMC-L2, (average accuracy of 88:3) are slightly worse than fP-

CMC-L1 and equivalent to GC-FIS. We believe though that this

decrease in accuracy is acceptable when considering the much

more simple initialization step without background labels. The

DCM boxplot for fP-CMC-L2 are shown in Fig. 6.

Conclusion

The most important methodological contributions of our work

are the use of a graph of intensity patches for representing the

ultrasound image and a fast minimization scheme for the

continuous min cut problem. This new formulation has consid-

erably reduced the computation time as regards our previous

version [20]. Intuitively, our proposed graph cut method can be

seen as a heat diffusion process on the graph of image patches.

The heat diffusion propagates the information of the inside and

outside labels selected by the user. Regions of interest that wish to

be segmented entirely depend on the choice of the labels, i.e.

which image patches are selected to be diffused. In other words,

our segmentation method can segment both homogeneous and

heterogeneous US regions, offering high-quality results with a

large flexibility to work on different targets.

In practice, most parameters are easily set. Actually, we found

that for many different B-mode sequence and scanners, the same

parameter values provided high accurate results (all parameters

are equally set for all clinical applications presented). The only

parameter that may required an initial fine tuning according to B-

Table 5. Quantitative evaluation of the estimated fetal head circumference versus biometry provided by radiologists.

Figure 7(a) 7(b) 7(c) 7(d) 7(e) 7(f)

HC (mm) fP-CMC 253 265 257 250 255 251

GT 260 256 267 262 257 254

Iterations fP-CMC 2 2 3 2 3 2

Convergence Time (s) fP-CMC 7 6 8 6 8 8

doi:10.1371/journal.pone.0100972.t005

Figure 8. Inter-subject variability. Error measurements of our method w.r.t. the confidence interval at 95% and Bland-Altman plot of inter-subject
variability from [65].
doi:10.1371/journal.pone.0100972.g008
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mode sequence is the scaling parameter s which is more sensitive

when the contrast between foreground and background is low, but

which can be overcame with a proper label initialization. We

showed that despite the semi-supervision, our segmentation

framework provides highly accurate and quantitatively similar

results for different types of labels and users. Indeed, setting the

initial labels (by few clicks, lines, circles, etc.) is extremely easy and

fast. The user interaction in the label definition might be seen as a

limitation of our method but, in our opinion, ultrasound image

analysis is particularly suited for an interactive segmentation

framework since, in clinical practice, physicians are used to extract

simple biometric measures from few click interactions. Moreover,

in cases where ultrasound image quality is really challenging, our

framework allows the expert to define labels close to the final

object thus providing not only a faster convergence but also more

reproducible segmentations. Nevertheless, in an application basis,

the label definition process can easily be automatized if needed

[20].

We have evaluated the segmentation results of the fP-CMC

framework in several clinical contexts (some of them aimed at

quantitative validation purposes more than real clinical applica-

tions). We have reported segmentation accuracy in average of 93%
for all clinical applications (Fig. 6). This proofs a high practical

value of our method in terms of flexibility and easy of use as

compared to state of the art methods (limited and optimized for a

specific organ and/or image sequence). Our interactive patch-

based philosophy is rather different from most existing segmen-

tation techniques for B-mode ultrasound imaging. Nevertheless,

we have compared our method to the closest methodology in

terms of interactive discrete graph cut segmentation [12] applied

to the prostate.

We have presented a segmentation method for 2D US images

since 2D US is widely accepted in clinical practice (except for the

eye, all our images where in 2D). However, following the

increasing number of 3D US imaging, the extension to 3D images

is does not change the mathematics neither the algorithm

introduced in this work. Plus, initialization could be easily

extended to 3D, for instance considering a few group of 2D slices

where the user clicks or to make use of 3D objects (sphere or

ellipsoids) as initial labels. We assume that in 3D we would keep

the same robustness as in the 2D case. However, this would

require confirmation with new experiments, which is out of the

scope of the paper.

Finally, we promote here the use of soft priors (semi-supervision

with labels) for the ultrasound segmentation. Nevertheless, we

agree that the use of strong shape, temporal and/or intensity,

priors can be for a specific target more powerful that our soft

priors. Note that strong priors can be easily included in our

mathematical formulation. Future work goes into exploring other

image features to be included in the patch representation (and the

corresponding patch distance function) in order to better represent

the echogenicity present in US imaging.

Table 6. Comparison with GC-FIS [12] using overall accuracy (AO).

Figure 9(a) 9(b) 9(c) 9(d) 9(e) 9(f)

AO-fP-CMC-L1 94.18 92.28 78.56 94.00 91.12 90.22

AO-fP-CMC-L2 87.65 93.43 77.79 90.92 90.02 90.15

AO [12] 94.35 92.92 74.54 91.40 85.81 90.71

doi:10.1371/journal.pone.0100972.t006

Figure 9. Segmentation of US prostate data set. 1st and 2nd rows: initialization labels as in [12] (yellow for object and blue for background) and
fP-CMC-L1 segmentation in red. 3th row: initial labels in yellow and fP-CMC-L2 segmentation in red contour. Ground truth is in transparent green area.
We refer to [12] for visual comparison with GC-FIS results.
doi:10.1371/journal.pone.0100972.g009
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