1,568 research outputs found
Discrete solitons in coupled active lasing cavities
We examine the existence and stability of discrete spatial solitons in
coupled nonlinear lasing cavities (waveguide resonators), addressing the case
of active defocusing media, where the gain exceeds damping in the low-amplitude
limit. A new family of stable localized structures is found: these are bright
and grey cavity solitons representing the connections between homogeneous and
inhomogeneous states. Solitons of this type can be controlled by the discrete
diffraction and are stable when the bistability of homogenous states is absent.Comment: 3 pages, 3 figures, accepted to Optics Letters (October 2012
Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors
We study the collective modes in the magnetic-field-induced spin-density-wave
(FISDW) phases experimentally observed in organic conductors of the Bechgaard
salts family. In phases that exhibit a sign reversal of the quantum Hall effect
(Ribault anomaly), the coexistence of two spin-density waves gives rise to
additional collective modes besides the Goldstone modes due to spontaneous
translation and rotation symmetry breaking. These modes strongly affect the
charge and spin response functions. We discuss some experimental consequences
for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in
Europhys. Let
Ground-based follow-up observations of TRAPPIST-1 transits in the near-infrared
The TRAPPIST-1 planetary system is a favorable target for the atmospheric
characterization of temperate earth-sized exoplanets by means of transmission
spectroscopy with the forthcoming James Webb Space Telescope (JWST). A possible
obstacle to this technique could come from the photospheric heterogeneity of
the host star that could affect planetary signatures in the transit
transmission spectra. To constrain further this possibility, we gathered an
extensive photometric data set of 25 TRAPPIST-1 transits observed in the
near-IR J band (1.2 m) with the UKIRT and the AAT, and in the NB2090 band
(2.1 m) with the VLT during the period 2015-2018. In our analysis of these
data, we used a special strategy aiming to ensure uniformity in our
measurements and robustness in our conclusions. We reach a photometric
precision of (RMS of the residuals), and we detect no significant
temporal variations of transit depths of TRAPPIST-1 b, c, e, and g over the
period of three years. The few transit depths measured for planets d and f hint
towards some level of variability, but more measurements will be required for
confirmation. Our depth measurements for planets b and c disagree with the
stellar contamination spectra originating from the possible existence of bright
spots of temperature 4500 K. We report updated transmission spectra for the six
inner planets of the system which are globally flat for planets b and g and
some structures are seen for planets c, d, e, and f.Comment: accepted for publication in MNRA
Wave Function of a Brane-like Universe
Within the mini-superspace model, brane-like cosmology means performing the
variation with respect to the embedding (Minkowski) time before fixing
the cosmic (Einstein) time . The departure from Einstein limit is
parameterized by the 'energy' conjugate to , and characterized by a
classically disconnected Embryonic epoch. In contrast with canonical quantum
gravity, the wave-function of the brane-like Universe is (i) -dependent,
and (ii) vanishes at the Big Bang. Hartle-Hawking and Linde proposals dictate
discrete 'energy' levels, whereas Vilenkin proposal resembles -particle
disintegration.Comment: Revtex, 4 twocolumn pages, 3 eps figures (accepted for publication in
Class. Quan. Grav.
Atom made from charged elementary black hole
It is believed that there may have been a large number of black holes formed
in the very early universe. These would have quantised masses. A charged
``elementary black hole'' (with the minimum possible mass) can capture
electrons, protons and other charged particles to form a ``black hole atom''.
We find the spectrum of such an object with a view to laboratory and
astronomical observation of them, and estimate the lifetime of the bound
states. There is no limit to the charge of the black hole, which gives us the
possibility of observing Z>137 bound states and transitions at the lower
continuum. Negatively charged black holes can capture protons. For Z>1, the
orbiting protons will coalesce to form a nucleus (after beta-decay of some
protons to neutrons), with a stability curve different to that of free nuclei.
In this system there is also the distinct possibility of single quark capture.
This leads to the formation of a coloured black hole that plays the role of an
extremely heavy quark interacting strongly with the other two quarks. Finally
we consider atoms formed with much larger black holes.Comment: 22 pages, 4 figure
Contribution of the magnetic resonance to the third harmonic generation from a fishnet metamaterial
We investigate experimentally and theoretically the third harmonic generated
by a double-layer fishnet metamaterial. To unambiguously disclose most notably
the influence of the magnetic resonance, the generated third harmonic was
measured as a function of the angle of incidence. It is shown experimentally
and numerically that when the magnetic resonance is excited by pump beam, the
angular dependence of the third harmonic signal has a local maximum at an
incidence angle of {\theta} \simeq 20{\deg}. This maximum is shown to be a
fingerprint of the antisymmetric distribution of currents in the gold layers.
An analytical model based on the nonlinear dynamics of the electrons inside the
gold shows excellent agreement with experimental and numerical results. This
clearly indicates the difference in the third harmonic angular pattern at
electric and magnetic resonances of the metamaterial.Comment: 7 pages, 5 figure
Kinematics of electrons near a Van Hove singularity
A two dimensional electronic system, where the Fermi surface is close to a
Van Hove singularity, shows a variety of weak coupling instabilities, and it is
a convenient model to study the interplay between antiferromagnetism and
anisotropic superconductivity. We present a detailed analysis of the kinematics
of the electron scattering in this model. The similitudes, and differences,
between a standard Renormalization Group approach and previous work based on
parquet summations of log divergences are analyzed, with emphasis on the
underlying physical processes. General properties of the phase diagram are
discussed.Comment: 5 pages, 3 postscript figure
Collective modes in a system with two spin-density waves: the `Ribault' phase of quasi-one-dimensional organic conductors
We study the long-wavelength collective modes in the magnetic-field-induced
spin-density-wave (FISDW) phases experimentally observed in organic conductors
of the Bechgaard salts family, focusing on phases that exhibit a sign reversal
of the quantum Hall effect (Ribault anomaly). We have recently proposed that
two SDW's coexist in the Ribault phase, as a result of Umklapp processes. When
the latter are strong enough, the two SDW's become circularly polarized
(helicoidal SDW's). In this paper, we study the collective modes which result
from the presence of two SDW's. We find two Goldstone modes, an out-of-phase
sliding mode and an in-phase spin-wave mode, and two gapped modes. The sliding
Goldstone mode carries only a fraction of the total optical spectral weight,
which is determined by the ratio of the amplitude of the two SDW's. In the
helicoidal phase, all the spectral weight is pushed up above the SDW gap. We
also point out similarities with phase modes in two-band or bilayer
superconductors. We expect our conclusions to hold for generic two-SDW systems.Comment: Revised version, 25 pages, RevTex, 7 figure
Possible Ordered States in the 2D Extended Hubbard Model
Possible ordered states in the 2D extended Hubbard model with on-site (U>0)
and nearest-neighbor (V) interaction are examined near half filling, with
emphasis on the effect of finite V. First, the phase diagram at absolute zero
is determined in the mean field approximation. For , a state where
d_{x^{2}-y^{2}}-wave superconductivity (dSC), commensurate spin-density-wave
(SDW) and -triplet pair coexist is seen to be stabilized. Here, the
importance of -triplet pair on the coexistence of dSC and SDW is
indicated. This coexistent state is hampered by the phase separation (PS),
which is generally expected to occur in the presence of finite-range attractive
interaction, but survives. For V>0, a state where commensurate
charge-density-wave (CDW), SDW and ferromagnetism (FM) coexist is seen to be
stabilized. Here, the importance of FM on the coexistence of CDW and SDW is
indicated. Next, in order to examine the effects of fluctuation on each mean
field ordered state, the renormalization group method for the special case that
the Fermi level lies just on the saddle points, (,0) and (0,), is
applied. The crucial difference from the mean field result is that
superconductivity can arise even for U>0 and , where the
superconducting gap symmetry is d_{x^{2}-y^{2}}-wave for U>4V and s-wave for
U<4V. Finally, the possibilities that the mean field coexistent states survive
in the presence of fluctuation are discussed.Comment: 12 pages, 19 figures included, revised versio
Magnetic and superconducting instabilities of the Hubbard model at the van Hove filling
We use a novel temperature-flow renormalization group technique to analyze
magnetic and superconducting instabilities in the two-dimensional t-t' Hubbard
model for particle densities close to the van Hove filling as a function of the
next-nearest neighbor hopping t'. In the one-loop flow at the van Hove filling,
the characteristic temperature for the flow to strong coupling is suppressed
drastically around t'_c approx. -0.33t, suggesting a quantum critical point
between d-wave pairing at moderate t'>t'_c and ferromagnetism for t'<t'_c. Upon
increasing the particle density in the latter regime the leading instability
occurs in the triplet pairing channel.Comment: 4 pages, to appear in Physical Review Letter
- …
