286 research outputs found

    Demonstration Advanced Avionics System (DAAS) function description

    Get PDF
    The Demonstration Advanced Avionics System, DAAS, is an integrated avionics system utilizing microprocessor technologies, data busing, and shared displays for demonstrating the potential of these technologies in improving the safety and utility of general aviation operations in the late 1980's and beyond. Major hardware elements of the DAAS include a functionally distributed microcomputer complex, an integrated data control center, an electronic horizontal situation indicator, and a radio adaptor unit. All processing and display resources are interconnected by an IEEE-488 bus in order to enhance the overall system effectiveness, reliability, modularity and maintainability. A detail description of the DAAS architecture, the DAAS hardware, and the DAAS functions is presented. The system is designed for installation and flight test in a NASA Cessna 402-B aircraft

    In Vivo Measurements of Tumor Metabolism and Growth after Administration of Enzastaurin Using Small Animal FDG Positron Emission Tomography

    Get PDF
    Background. The use of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) may help to establish the antitumor activity of enzastaurin, a novel protein kinase C-beta II (PKC-βII) inhibitor, in mouse xenografts. Methods. The hematologic cell line RAJI and the solid tumor cell line U87MG were each implanted in NOD/SCID mice. Standard tumor growth measurements and [18F]FDG PET imaging were performed weekly for up to three weeks after tumor implantation and growth. Results. Concomitant with caliper measurements, [18F]FDG PET imaging was performed to monitor glucose metabolism. Heterogeneity of glucose uptake in various areas of the tumors was observed after vehicle or enzastaurin treatment. This heterogeneity may limit the use of [18F]FDG PET imaging to measure enzastaurin-associated changes in xenograft tumors. Conclusion. [18F]FDG PET imaging technique does not correlate with standard caliper assessments in xenografts to assess the antitumor activity of enzastaurin. Future studies are needed to determine the use of [18F]FDG PET imaging in preclinical models

    Demonstration Advanced Avionics System (DAAS), Phase 1

    Get PDF
    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed

    A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early radiation of the <it>Cetartiodactyla </it>is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (<it>Cetacea </it>and <it>Ruminantia</it>). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields.</p> <p>Results and discussion</p> <p>We report a large interstitial insertion in the Y amelogenin locus in most of the <it>Cetartiodactyla </it>lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species.</p> <p>When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in <it>Cetartiodactyla </it>whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion.</p> <p>The 1 kbp <it>Amel-Y </it>amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region.</p> <p>Conclusion</p> <p>The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the <it>Cetartiodactyla </it>but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science.</p

    Genomic Responses to Abnormal Gene Dosage: The X Chromosome Improved on a Common Strategy

    Get PDF
    This new primer, which discusses a study by Zhang et al., provides an overview of the process by which chromosomes achieve dose compensation and the mechanisms underlying this phenomenon in Drosophila S2 cells

    Chromatin analysis of occluded genes

    Get PDF
    We recently described two opposing states of transcriptional competency. One is termed ‘competent’ whereby a gene is capable of responding to trans-acting transcription factors of the cell, such that it is active if appropriate transcriptional activators are present, though it can also be silent if activators are absent or repressors are present. The other is termed ‘occluded’ whereby a gene is silenced by cis-acting, chromatin-based mechanisms in a manner that blocks it from responding to trans-acting factors, such that it is silent even when activators are present in the cellular milieu. We proposed that gene occlusion is a mechanism by which differentiated cells stably maintain their phenotypic identities. Here, we describe chromatin analysis of occluded genes. We found that DNA methylation plays a causal role in maintaining occlusion for a subset of occluded genes. We further examined a variety of other chromatin marks typically associated with transcriptional silencing, including histone variants, covalent histone modifications and chromatin-associated proteins. Surprisingly, we found that although many of these marks are robustly linked to silent genes (which include both occluded genes and genes that are competent but silent), none is linked specifically to occluded genes. Although the observation does not rule out a possible causal role of these chromatin marks in occlusion, it does suggest that these marks might be secondary effect rather than primary cause of the silent state in many genes

    A Large Expansion of the HSFY Gene Family in Cattle Shows Dispersion across Yq and Testis-Specific Expression

    Get PDF
    Heat shock transcription factor, Y-linked (HSFY) is a member of the heat shock transcriptional factor (HSF) family that is found in multiple copies on the Y chromosome and conserved in a number of species. Its function still remains unknown but in humans it is thought to play a role in spermatogenesis. Through real time polymerase chain reaction (PCR) analyses we determined that the HSFY family is largely expanded in cattle (∼70 copies) compared with human (2 functional copies, 4 HSFY-similar copies). Unexpectedly, we found that it does not vary among individual bulls as a copy number variant (CNV). Using fluorescence in situ hybridization (FISH) we found that the copies are dispersed along the long arm of the Y chromosome (Yq). HSFY expression in cattle appears restricted to the testis and its mRNA correlates positively with mRNA markers of spermatogonial and spermatocyte cells (UCHL1 and TRPC2, respectively) which suggests that HSFY is expressed (at least in part) in early germ cells
    corecore