466 research outputs found

    Dirac Quantization of Two-Dimensional Dilaton Gravity Minimally Coupled to N Massless Scalar Fields

    Get PDF
    It is shown that the Callan-Giddings-Harvey-Strominger theory on the cylinder can be consistently quantized (using Dirac's approach) without imposing any constraints on the sign of the gravitational coupling constant or the sign (or value) of the cosmological constant. The quantum constraints in terms of the original geometrical variables are also derived

    Canonical Equivalence of a Generic 2D Dilaton Gravity Model and a Bosonic String Theory

    Get PDF
    We show that a canonical tranformation converts, up to a boundary term, a generic 2d dilaton gravity model into a bosonic string theory with a Minkowskian target space.Comment: LaTeX file, 9 pages, no figure

    Minisuperspace Model for Revised Canonical Quantum Gravity

    Full text link
    We present a reformulation of the canonical quantization of gravity, as referred to the minisuperspace; the new approach is based on fixing a Gaussian (or synchronous) reference frame and then quantizing the system via the reconstruction of a suitable constraint; then the quantum dynamics is re-stated in a generic coordinates system and it becomes dependent on the lapse function. The analysis follows a parallelism with the case of the non-relativistic particle and leads to the minisuperspace implementation of the so-called {\em kinematical action} as proposed in \cite{M02} (here almost coinciding also with the approach presented in \cite{KT91}). The new constraint leads to a Schr\"odinger equation for the system. i.e. to non-vanishing eigenvalues for the super-Hamiltonian operator; the physical interpretation of this feature relies on the appearance of a ``dust fluid'' (non-positive definite) energy density, i.e. a kind of ``materialization'' of the reference frame. As an example of minisuperspace model, we consider a Bianchi type IX Universe, for which some dynamical implications of the revised canonical quantum gravity are discussed. We also show how, on the classical limit, the presence of the dust fluid can have relevant cosmological issues. Finally we upgrade our analysis by its extension to the generic cosmological solution, which is performed in the so-called long-wavelength approximation. In fact, near the Big-Bang, we can neglect the spatial gradients of the dynamical variables and arrive to implement, in each space point, the same minisuperspace paradigm valid for the Bianchi IX model.Comment: 16 pages, no figures, to appear on International Journal of Modern Physics

    Canonical Formulation of pp-waves

    Full text link
    We construct a Hamiltonian formulation for the class of plane-fronted gravitational waves with parallel rays (pp-waves). Because of the existence of a light-like Killing vector, the dynamics is effectively reduced to a 2+1 evolution with "time" chosen to be light-like. In spite of the vanishing action this allows us to geometrically identify a symplectic form as well as dynamical Hamiltonian, thus casting the system into canonical form.Comment: To appear in the "Obregon Festschrift

    Free fields via canonical transformations of matter-coupled 2D dilaton gravity models

    Get PDF
    It is shown that the 1+1-dimensional matter-coupled Jackiw-Teitelboim model and the model with an exponential potential can be converted by means of appropriate canonical transformations into a bosonic string theory propagating on a flat target space with an indefinite signature. This makes it possible to consistently quantize these models in the functional Schroedinger representation thus generalizing recent results on CGHS theory.Comment: 15 pages, Late

    ADM Worldvolume Geometry

    Full text link
    We describe the dynamics of a relativistic extended object in terms of the geometry of a configuration of constant time. This involves an adaptation of the ADM formulation of canonical general relativity. We apply the formalism to the hamiltonian formulation of a Dirac-Nambu-Goto relativistic extended object in an arbitrary background spacetime.Comment: 4 pages, Latex. Uses espcrc2.sty To appear in the proceedings of the Third Conference on Constrained Dynamics and Quantum Gravity, September, 1999. To appear in Nuclear Physics B (Proceedings Supplement

    Free-Field Realization of D-dimensional Cylindrical Gravitational Waves

    Get PDF
    We find two-dimensional free-field variables for D-dimensional general relativity on spacetimes with D-2 commuting spacelike Killing vector fields and non-compact spatial sections for D>4. We show that there is a canonical transformation which maps the corresponding two-dimensional dilaton gravity theory into a two-dimensional diffeomorphism invariant theory of the free-field variables. We also show that the spacetime metric components can be expressed as asymptotic series in negative powers of the dilaton, with coefficients which can be determined in terms of the free fields.Comment: 15 pages, Late

    Time asymmetries in quantum cosmology and the searching for boundary conditions to the Wheeler-DeWitt equation

    Get PDF
    The paper addresses the quantization of minisuperspace cosmological models by studying a possible solution to the problem of time and time asymmetries in quantum cosmology. Since General Relativity does not have a privileged time variable of the newtonian type, it is necessary, in order to have a dynamical evolution, to select a physical clock. This choice yields, in the proposed approach, to the breaking of the so called clock-reversal invariance of the theory which is clearly distinguished from the well known motion-reversal invariance of both classical and quantum mechanics. In the light of this new perspective, the problem of imposing proper boundary conditions on the space of solutions of the Wheeler-DeWitt equation is reformulated. The symmetry-breaking formalism of previous papers is analyzed and a clarification of it is proposed in order to satisfy the requirements of the new interpretation.Comment: 25 pages, 1 figur

    Brane-world Quantum Gravity

    Full text link
    The Arnowitt-Deser-Misner canonical formulation of general relativity is extended to the covariant brane-world theory in arbitrary dimensions. The exclusive probing of the extra dimensions makes a substantial difference, allowing for the construction of a non-constrained canonical theory. The quantum states of the brane-world geometry are defined by the Tomonaga-Schwinger equation, whose integrability conditions are determined by the classical perturbations of submanifolds contained in the Nash's differentiable embedding theorem. In principle, quantum brane-world theory can be tested by current experiments in astrophysics and by near future laboratory experiments at Tev energy. The implications to the black-hole information loss problem, to the accelerating cosmology, and to a quantum mathematical theory of four-sub manifolds are briefly commented.Comment: 14 pages, no figures, JHEP format, to appear in JHEP April 200
    • …
    corecore