253 research outputs found

    Toolgraph Design of Optimal and Feasible Control Strategies for Time-Varying Dynamical Systems

    Get PDF
    The paper presents a new method for designing optimal and feasible control strategies for time-variant dynamical processes. The key point of the presented idea lies in utilizing a flow graph structure for representing pertinent properties of the autonomous dynamics of a given dynamical process in a time-and-state space, which is composed of certain elementary segments. The structure is referred to as a time-and-state space toolgraph. In the procedure, each segment of the temporary state space is assigned a node of the time-and-state space toolgraph. The flow values are proportional to the cost of driving the operational point of the dynamical process between the centers of adjacent segments. Any of the discrete optimization algorithms can be applied to search for a cheapest path connecting the initial and terminal points of the sought optimal piecewise-linear trajectory of the operational points in the considered time-and-state space. Additional assumptions or restrictions concerning arbitrary forbidden zones for the operational points can be easily taken into account. In such cases the nodes representing the segments partially or entirely belonging to the finite forbidden zones are deposed from the toolgraph structure

    Biomass extraction using non-chlorinated solvents for biocompatibility improvement of polyhydroxyalkanoates

    Get PDF
    An economically viable method to extract polyhydroxyalkanoates (PHAs) from cells is desirable for this biodegradable polymer of potential biomedical applications. In this work, two non-chlorinated solvents, cyclohexanone and -butyrolactone, were examined for extracting PHA produced by the bacterial strain Cupriavidus necator H16 cultivated on vegetable oil as a sole carbon source. The PHA produced was determined as a poly(3-hydroxybutyrate) (PHB) homopolyester. The extraction kinetics of the two solvents was determined using gel permeation chromatography (GPC). When cyclohexanone was used as the extraction solvent at 120 C in 3 min, 95% of the PHB was recovered from the cells with a similar purity to that extracted using chloroform. With a decrease in temperature, the recovery yield decreased. At the same temperatures, the recovery yield of -butyrolactone was significantly lower. The effect of the two solvents on the quality of the extracted PHB was also examined using GPC and elemental analysis. The molar mass and dispersity of the obtained polymer were similar to that extracted using chloroform, while the nitrogen content of the PHB extracted using the two new solvents was slightly higher. In a nutshell, cyclohexanone in particular was identified as an expedient candidate to efficiently drive novel, sustainable PHA extraction processes

    Towards a pan-Arctic inventory of the species diversity of the macro- and megabenthic fauna of the Arctic shelf seas

    Get PDF
    Although knowledge of Arctic seas has increased tremendously in the past decade, benthic diversity was investigated at regional scales only, and no attempt had been made to examine it across the entire Arctic. We present a first pan-Arctic account of the species diversity of the macro- and megabenthic fauna of the Arctic marginal shelf seas. It is based on an analysis of 25 published and unpublished species-level data sets, together encompassing 14 of the 19 marine Arctic shelf ecoregions and comprising a total of 2636 species, including 847 Arthropoda, 668 Annelida, 392 Mollusca, 228 Echinodermata, and 501 species of other phyla. For the four major phyla, we also analyze the differences in faunal composition and diversity among the ecoregions. Furthermore, we compute gross estimates of the expected species numbers of these phyla on a regional scale. Extrapolated to the entire fauna and study area, we arrive at the conservative estimate that 3900 to 4700 macro- and megabenthic species can be expected to occur on the Arctic shelves. These numbers are smaller than analogous estimates for the Antarctic shelf but the difference is on the order of about two and thus less pronounced than previously assumed. On a global scale, the Arctic shelves are characterized by intermediate macro- and megabenthic species numbers. Our preliminary pan-Arctic inventory provides an urgently needed assessment of current diversity patterns that can be used by future investigations for evaluating the effects of climate change and anthropogenic activities in the Arctic

    Protocols for the field testing

    Get PDF
    The COMMON SENSE project has been designed and planned in order to meet the general and specific scientific and technical objectives mentioned in its Description of Work (page 77). In an overall strategy of the work plan, work packages (11) can be grouped into 3 key phases: (1) RD basis for cost-effective sensor development, (2) Sensor development, sensor web platform and integration, and (3) Field testing. In the first two phases WP1 and WP2 partners have provided a general understanding and integrated basis for a cost effective sensors development. Within the following WPs 4 to 8 the new sensors are created and integrated into different identified platforms. During the third phase 3, characterized by WP9, partners will deploy precompetitive prototypes at chosen platforms (e.g. research vessels, oil platforms, buoys and submerged moorings, ocean racing yachts, drifting buoys). Starting from August 2015 (month 22; task 9.2), these platforms will allow the partnership to test the adaptability and performance of the in-situ sensors and verify if the transmission of data is properly made, correcting deviations. In task 9.1 all stakeholders identified in WP2, and other relevant agents, have been contacted in order to close a coordinated agenda for the field testing phase for each of the platforms. Field testing procedures (WP2) and deployment specificities, defined during sensor development in WPs 4 to 8, are closely studied by all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment (e.g. transport of instruments). All this information will provide the basis for designing and coordinating field testing activities. Type and characteristics of the system (vessel or mooring, surface or deep, open sea or coastal area, duration, etc.), used for the field testing activities, are planned comprising the indicators included in the above-mentioned descriptors, taking into account that they must of interest for eutrophication, concentration of contaminants, marine litter and underwater noise. In order to obtain the necessary information, two tables were realized starting from the information acquired for D2.2 delivered in June 2014. One table was created for sensor developers and one for those partners that will test the sensors at sea. The six developers in COMMON SENSE have provided information on the seven sensors: CEFAS and IOPAN for underwater noise; IDRONAUT and LEITAT for microplastics; CSIC for an innovative piro and piezo resistive polymeric temperature and pressure and for heavy metal; DCU for the eutrophication sensor. This information is anyway incomplete because in most cases the novel sensors are still far to be ready and will be developed over the course of COMMON SENSE. So the sensors cannot be clearly designed yet and, consequently, technical characteristics cannot still be perfectly defined. This produces some lag in the acquired information and, consequently, in the planning of their testing on specific platforms that will be solved in the near future. In the table for Testers, partners have provided information on fifteen available platforms. Specific answers have been given on number and type of sensors on each platforms, their availability and technical characteristics, compatibility issues and, very important when new sensors are tested, comparative measurements to be implemented to verify them. Finally IOPAN has described two more platforms, a motorboat not listed in the DoW, but already introduced in D2.2, and their oceanographic buoy in the Gdansk Bay that was previously unavailable. The same availability now is present for the OBSEA Underwater observatory from CSIC, while their Aqualog undulating mooring is still not ready for use. In the following months, new information on sensors and platforms will be provided and the planning of testing activities will improve. Further updates of this report will be therefore necessary in order to individuate the most suitable platforms to test each kind of sensor. Objectives and rationale The objective of deliverable 9.1 is the definition of field testing procedures (WP2), the study of deployment specificities during sensor development work packages (from WP4 to WP8) and the preparation of protocols. This with the participation of all stakeholders involved in field testing activities in order for everyone to know their role, how to proceed and to provide themselves with the necessary material and equipment

    Iron is neurotoxic in retinal detachment and transferrin confers neuroprotection.

    Get PDF
    In retinal detachment (RD), photoreceptor death and permanent vision loss are caused by neurosensory retina separating from the retinal pigment epithelium because of subretinal fluid (SRF), and successful surgical reattachment is not predictive of total visual recovery. As retinal iron overload exacerbates cell death in retinal diseases, we assessed iron as a predictive marker and therapeutic target for RD. In the vitreous and SRF from patients with RD, we measured increased iron and transferrin (TF) saturation that is correlated with poor visual recovery. In ex vivo and in vivo RD models, iron induces immediate necrosis and delayed apoptosis. We demonstrate that TF decreases both apoptosis and necroptosis induced by RD, and using RNA sequencing, pathways mediating the neuroprotective effects of TF are identified. Since toxic iron accumulates in RD, we propose TF supplementation as an adjunctive therapy to surgery for improving the visual outcomes of patients with RD

    Placental Growth Factor Contributes to Micro-Vascular Abnormalization and Blood-Retinal Barrier Breakdown in Diabetic Retinopathy

    Get PDF
    OBJECTIVE: There are controversies regarding the pro-angiogenic activity of placental growth factor (PGF) in diabetic retinopathy (DR). For a better understanding of its role on the retina, we have evaluated the effect of a sustained PGF over-expression in rat ocular media, using ciliary muscle electrotransfer (ET) of a plasmid encoding rat PGF-1 (pVAX2-rPGF-1). MATERIALS AND METHODS: pVAX2-rPGF-1 ET in the ciliary muscle (200 V/cm) was achieved in non diabetic and diabetic rat eyes. Control eyes received saline or naked plasmid ET. Clinical follow up was carried out over three months using slit lamp examination and fluorescein angiography. After the control of rPGF-1 expression, PGF-induced effects on retinal vasculature and on the blood-external barrier were evaluated respectively by lectin and occludin staining on flat-mounts. Ocular structures were visualized through histological analysis. RESULTS: After fifteen days of rPGF-1 over-expression in normal eyes, tortuous and dilated capillaries were observed. At one month, microaneurysms and moderate vascular sprouts were detected in mid retinal periphery in vivo and on retinal flat-mounts. At later stages, retinal pigmented epithelial cells demonstrated morphological abnormalities and junction ruptures. In diabetic retinas, PGF expression rose between 2 and 5 months, and, one month after ET, rPGF-1 over-expression induced glial activation and proliferation. CONCLUSION: This is the first demonstration that sustained intraocular PGF production induces vascular and retinal changes similar to those observed in the early stages of diabetic retinopathy. PGF and its receptor Flt-1 may therefore be looked upon as a potential regulatory target at this stage of the disease
    corecore