47 research outputs found
Ion-implantation induced anomalous surface amorphization in silicon
Spectroscopic ellipsometry (SE), high-depth-resolution Rutherford backscattering (RBS) and channeling have been used to examine the surface damage formed by room temperature N and B implantation into silicon. For the analysis of the SE data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fraction of the amorphous silicon component in the layers) by linear regression. The dependence of the thickness of the surface-damaged silicon layer (beneath the native oxide layer) on the implantation parameters was determined: the higher the dose, the thicker the disordered layer at the surface. The mechanism of the surface amorphization process is explained in relation to the ion beam induced layer-by-layer amorphization. The results demonstrate the applicability of Spectroscopic ellipsometry with a proper optical model. RBS, as an independent cross-checking method supported the constructed optical model
Kraftutbygging i BΓΈelva, Telemark. Konsekvenser for resipientforhold og fiske
PΓ₯ grunnlag av tidligere undersΓΈkelsesresultater, innsamlete opplysninger og utfΓΈrte beregninger er det foretatt en vurdering av konsekvenser overfor resipientforhold og fiske av planlagt kraftutbygging i BΓΈelva i Telemark. Det antas at utbyggingen bl.a. vil kunne fΓΈre til nedsatt resipientkapasitet, ΓΈkt begroing av alger og hΓΈyere vegetasjon, og skadevirkninger overfor fisket pΓ₯ enkelte strekninger. Det er gitt forslag til praktiske tiltak som kan redusere skadevirkningeneUtvalget for utbygging av BΓΈfossan
Kraftutbygging i BΓΈelva, Telemark. Konsekvenser for resipientforhold og fiske
PΓ₯ grunnlag av tidligere undersΓΈkelsesresultater, innsamlete opplysninger og utfΓΈrte beregninger er det foretatt en vurdering av konsekvenser overfor resipientforhold og fiske av planlagt kraftutbygging i BΓΈelva i Telemark. Det antas at utbyggingen bl.a. vil kunne fΓΈre til nedsatt resipientkapasitet, ΓΈkt begroing av alger og hΓΈyere vegetasjon, og skadevirkninger overfor fisket pΓ₯ enkelte strekninger. Det er gitt forslag til praktiske tiltak som kan redusere skadevirkningen
Improved depth resolution of channeling measurements in Rutherford backscattering by a detector tilt
Nanoscale morphology and photoemission of arsenic implanted germanium films
Germanium films of 140 nm thickness deposited onto Si substrate were implanted with 70 keV arsenic ions with a dose of 2.5x10(14) cm(-2). The morphology of the implanted films was determined by Rutherford backscattering and cross-sectional transmission electron microscopy. Concentration of oxygen and carbon impurities and their distribution in the implanted layer were detected by secondary-ion-mass spectroscopy and nuclear reaction analysis using the O-16(He-4,He-4)O-16 reaction. The depth dependence of the valence band density of states was investigated by measuring the energy distribution curve of photoelectrons using Ar ion etching for profiling. The morphology of As implanted film was dominated by nanosized (10-100 nm) Ge islands separated by empty bubbles at a depth of 20-50 nm under the surface. At depth ranges of 0-20 and 70 to a measured depth of 140 nm, however, morphology of the as-evaporated Ge film was not modified. At a depth of 20-50 nm, photoelectron spectra were similar to those obtained for Ge amorphized with heavy ion (Sb) implantation [implantation induced (I.I.) a-Ge]. The depth profile of the morphology and the photoemission data indicate correlation between the morphology and valence band density of states of the ion I.I. a-Ge. As this regime was formed deep in the evaporated film, i.e., isolated from the environment, any contamination, etc., effect can be excluded. The depth distribution of this I.I. a-Ge layer shows that the atomic displacement process cannot account for its formation
Formation of iron silicide layers on Si by ion implantation and laser beams / R.M. Bayazitov, R.l. Batalov, G.D Ivlev, E.l.Gatskevich, I. Dezsi, E. Kotai
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΠΏΡΠΎΡΠ΅ΡΡΡ ΡΠΈΠ½ΡΠ΅Π·Π° ΡΠΎΠ½ΠΊΠΈΡ
ΠΏΠ»Π΅Π½ΠΎΠΊ ΡΠΈΠ»ΠΈΡΠΈΠ΄ΠΎΠ² ΠΆΠ΅Π»Π΅Π·Π° (FeSi ΠΈ Ξ²-FeSi2) Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ Si (100), ΠΈΠΌΠΏΠ»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ Fe+ (D=1016 - 2 X 1017 ΡΠΌ-2) ΠΏΡΠΈ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠΉ Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ (Ξ» = 0.69 ΠΌΠΊΠΌ, Ρ = 80 Π½Ρ) Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ W = 0.6 - 1,4 ΠΠΆ/ΡΠΌ2. ΠΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ²ΡΠΊΠΎΠΉ Π΄ΠΈΡΡΠ°ΠΊΡΠΈΠΈ, ΠΏΡΠΎΡΠ²Π΅ΡΠΈΠ²Π°ΡΡΠ΅ΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΠΊΠΎΠΏΠΈΠΈ ΠΈ ΡΠ΅Π·Π΅ΡΡΠΎΡΠ΄ΠΎΠ²ΡΠΊΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ ΠΈΠ·ΡΡΠ΅Π½Ρ ΡΡΡΡΠΊΡΡΡΠ° ΠΈ ΡΠ°Π·ΠΎΠ²ΡΠΉ ΡΠΎΡΡΠ°Π² ΡΠΈΠ½ΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΏΠ»Π΅Π½ΠΎΠΊ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠΈ Fe Π² Si. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π»Π°Π·Π΅ΡΠ½ΡΠΉ ΠΎΡΠΆΠΈΠ³ (W= 0,6 - 1.1 ΠΠΆ/ΡΠΌ2, D = 1.8 Ρ
1017 ΡΠΌ-2) ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΏΠΈΡΠ°ΠΊΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΡΡΠ΅Ρ
ΠΈΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΡΠΈΠ»ΠΈΡΠΈΠ΄Π° ΠΆΠ΅Π»Π΅Π·Π° FeSi. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² ΠΈΠΌΠΏΡΠ»ΡΡΠ΅ Π΄ΠΎ 1.4 ΠΠΆ/ΡΠΌ2 ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°Π΅ΡΡΡ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΠΉ Π΄Π»Ρ ΠΆΠΈΠ΄ΠΊΠΎΡΠ°Π·Π½ΠΎΠΉ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΡΠ΅ΠΈΡΡΠΎΠΉ ΡΡΡΡΠΊΡΡΡΡ, ΡΠΎΡΡΠΎΡΡΠ΅ΠΉ ΠΈΠ· ΠΊΠΎΠ»ΠΎΠ½Π½ ΠΌΠΎΠ½ΠΎΠΊΡΠΈΡΡΠ°ΠΏΠ»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Si Ρ ΠΏΠΎΠΏΠ΅ΡΠ΅ΡΠ½ΡΠΌΠΈ ΡΠ°Π·ΠΌΠ΅ΡΠ°ΠΌΠΈ 30 - 40 Π½ΠΌ, ΡΠ°Π·Π΄Π΅Π»Π΅Π½Π½ΡΡ
Π³ΡΠ°Π½ΠΈΡΠ°ΠΌΠΈ ΠΈΠ· ΡΠΌΠ΅ΡΠΈ ΡΠΈΠ»ΠΈΡΠΈΠ΄Π½ΡΡ
ΡΠ°Π· (FeSi+ Ξ²-FeSi2). Π ΡΠ»ΡΡΠ°Π΅ ΠΌΠ°Π»ΡΡ
Π΄ΠΎΠ· ΠΈΠΌΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ (D ~ 1016 ΡΠΌ-2) ΡΡΠ΅ΠΈΡΡΠ°Ρ ΡΡΡΡΠΊΡΡΡΠ° ΡΠΎΡΠΌΠΈΡΡΠ΅ΡΡΡ ΠΏΡΠΈ ΠΌΠ΅Π½ΡΡΠΈΡ
ΡΠ½Π΅ΡΠ³ΠΈΡΡ
Π² ΠΈΠΌΠΏΡΠ»ΡΡΠ΅ (~ 0.8 ΠΠΆ/ΡΠΌ2). ΠΡΠΈ ΡΡΠΎΠΌ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΡΡΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎΠ΅ Π΄Π»Ρ ΠΌΠ°Π»ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
Π² Si ΠΏΡΠΈΠΌΠ΅ΡΠ΅ΠΉ Π²ΡΡΠ΅ΡΠ½Π΅Π½ΠΈΠ΅ Π²Π½Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Fe ΠΊ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ