47 research outputs found

    Ion-implantation induced anomalous surface amorphization in silicon

    Get PDF
    Spectroscopic ellipsometry (SE), high-depth-resolution Rutherford backscattering (RBS) and channeling have been used to examine the surface damage formed by room temperature N and B implantation into silicon. For the analysis of the SE data we used the conventional method of assuming appropriate optical models and fitting the model parameters (layer thicknesses and volume fraction of the amorphous silicon component in the layers) by linear regression. The dependence of the thickness of the surface-damaged silicon layer (beneath the native oxide layer) on the implantation parameters was determined: the higher the dose, the thicker the disordered layer at the surface. The mechanism of the surface amorphization process is explained in relation to the ion beam induced layer-by-layer amorphization. The results demonstrate the applicability of Spectroscopic ellipsometry with a proper optical model. RBS, as an independent cross-checking method supported the constructed optical model

    Kraftutbygging i BΓΈelva, Telemark. Konsekvenser for resipientforhold og fiske

    No full text
    PΓ₯ grunnlag av tidligere undersΓΈkelsesresultater, innsamlete opplysninger og utfΓΈrte beregninger er det foretatt en vurdering av konsekvenser overfor resipientforhold og fiske av planlagt kraftutbygging i BΓΈelva i Telemark. Det antas at utbyggingen bl.a. vil kunne fΓΈre til nedsatt resipientkapasitet, ΓΈkt begroing av alger og hΓΈyere vegetasjon, og skadevirkninger overfor fisket pΓ₯ enkelte strekninger. Det er gitt forslag til praktiske tiltak som kan redusere skadevirkningeneUtvalget for utbygging av BΓΈfossan

    Kraftutbygging i BΓΈelva, Telemark. Konsekvenser for resipientforhold og fiske

    No full text
    PΓ₯ grunnlag av tidligere undersΓΈkelsesresultater, innsamlete opplysninger og utfΓΈrte beregninger er det foretatt en vurdering av konsekvenser overfor resipientforhold og fiske av planlagt kraftutbygging i BΓΈelva i Telemark. Det antas at utbyggingen bl.a. vil kunne fΓΈre til nedsatt resipientkapasitet, ΓΈkt begroing av alger og hΓΈyere vegetasjon, og skadevirkninger overfor fisket pΓ₯ enkelte strekninger. Det er gitt forslag til praktiske tiltak som kan redusere skadevirkningen

    Nanoscale morphology and photoemission of arsenic implanted germanium films

    No full text
    Germanium films of 140 nm thickness deposited onto Si substrate were implanted with 70 keV arsenic ions with a dose of 2.5x10(14) cm(-2). The morphology of the implanted films was determined by Rutherford backscattering and cross-sectional transmission electron microscopy. Concentration of oxygen and carbon impurities and their distribution in the implanted layer were detected by secondary-ion-mass spectroscopy and nuclear reaction analysis using the O-16(He-4,He-4)O-16 reaction. The depth dependence of the valence band density of states was investigated by measuring the energy distribution curve of photoelectrons using Ar ion etching for profiling. The morphology of As implanted film was dominated by nanosized (10-100 nm) Ge islands separated by empty bubbles at a depth of 20-50 nm under the surface. At depth ranges of 0-20 and 70 to a measured depth of 140 nm, however, morphology of the as-evaporated Ge film was not modified. At a depth of 20-50 nm, photoelectron spectra were similar to those obtained for Ge amorphized with heavy ion (Sb) implantation [implantation induced (I.I.) a-Ge]. The depth profile of the morphology and the photoemission data indicate correlation between the morphology and valence band density of states of the ion I.I. a-Ge. As this regime was formed deep in the evaporated film, i.e., isolated from the environment, any contamination, etc., effect can be excluded. The depth distribution of this I.I. a-Ge layer shows that the atomic displacement process cannot account for its formation

    Formation of iron silicide layers on Si by ion implantation and laser beams / R.M. Bayazitov, R.l. Batalov, G.D Ivlev, E.l.Gatskevich, I. Dezsi, E. Kotai

    No full text
    Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ процСссы синтСза Ρ‚ΠΎΠ½ΠΊΠΈΡ… ΠΏΠ»Π΅Π½ΠΎΠΊ силицидов ΠΆΠ΅Π»Π΅Π·Π° (FeSi ΠΈ Ξ²-FeSi2) Π½Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ Si (100), ΠΈΠΌΠΏΠ»Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Fe+ (D=1016 - 2 X 1017 см-2) ΠΏΡ€ΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ½ΠΎΠΉ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ (Ξ» = 0.69 ΠΌΠΊΠΌ, Ρ‚ = 80 нс) Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ плотностСй энСргии W = 0.6 - 1,4 Π”ΠΆ/см2. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ рСнтгСновской Π΄ΠΈΡ„Ρ€Π°ΠΊΡ†ΠΈΠΈ, ΠΏΡ€ΠΎΡΠ²Π΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰Π΅ΠΉ элСктронной микроскопии ΠΈ рСзСрфордовского ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ рассСяния ΠΈΠ·ΡƒΡ‡Π΅Π½Ρ‹ структура ΠΈ Ρ„Π°Π·ΠΎΠ²Ρ‹ΠΉ состав синтСзированных ΠΏΠ»Π΅Π½ΠΎΠΊ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ примСси Fe Π² Si. Показано, Ρ‡Ρ‚ΠΎ Π»Π°Π·Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚ΠΆΠΈΠ³ (W= 0,6 - 1.1 Π”ΠΆ/см2, D = 1.8 Ρ… 1017 см-2) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ ΡΠΏΠΈΡ‚Π°ΠΊΡΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… слоСв стСхиомСтричСского моносилицида ΠΆΠ΅Π»Π΅Π·Π° FeSi. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ энСргии Π² ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ΅ Π΄ΠΎ 1.4 Π”ΠΆ/см2 сопровоТдаСтся ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠΉ для ΠΆΠΈΠ΄ΠΊΠΎΡ„Π°Π·Π½ΠΎΠΉ кристаллизации ячСистой структуры, состоящСй ΠΈΠ· ΠΊΠΎΠ»ΠΎΠ½Π½ монокристапличСского Si с ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹ΠΌΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ 30 - 40 Π½ΠΌ, Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π³Ρ€Π°Π½ΠΈΡ†Π°ΠΌΠΈ ΠΈΠ· смСси силицидных Ρ„Π°Π· (FeSi+ Ξ²-FeSi2). Π’ случаС ΠΌΠ°Π»Ρ‹Ρ… Π΄ΠΎΠ· ΠΈΠΌΠΏΠ»Π°Π½Ρ‚Π°Ρ†ΠΈΠΈ (D ~ 1016 см-2) ячСистая структура формируСтся ΠΏΡ€ΠΈ ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… энСргиях Π² ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ΅ (~ 0.8 Π”ΠΆ/см2). ΠŸΡ€ΠΈ этом Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎΠ΅ для малорастворимых Π² Si примСсСй вытСснСниС Π²Π½Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ Fe ΠΊ повСрхности
    corecore