1,220 research outputs found

    Phase transitions in systems with two species of molecular motors

    Full text link
    Systems with two species of active molecular motors moving on (cytoskeletal) filaments into opposite directions are studied theoretically using driven lattice gas models. The motors can unbind from and rebind to the filaments. Two motors are more likely to bind on adjacent filament sites if they belong to the same species. These systems exhibit (i) Continuous phase transitions towards states with spontaneously broken symmetry, where one motor species is largely excluded from the filament, (ii) Hysteresis of the total current upon varying the relative concentrations of the two motor species, and (iii) Coexistence of traffic lanes with opposite directionality in multi-filament systems. These theoretical predictions should be experimentally accessible.Comment: 7 pages, 4 figures, epl style (.cls-file included), to appear in Europhys. Lett. (http://www.edpsciences.org/epl

    Transport by molecular motors in the presence of static defects

    Get PDF
    The transport by molecular motors along cytoskeletal filaments is studied theoretically in the presence of static defects. The movements of single motors are described as biased random walks along the filament as well as binding to and unbinding from the filament. Three basic types of defects are distinguished, which differ from normal filament sites only in one of the motors' transition probabilities. Both stepping defects with a reduced probability for forward steps and unbinding defects with an increased probability for motor unbinding strongly reduce the velocities and the run lengths of the motors with increasing defect density. For transport by single motors, binding defects with a reduced probability for motor binding have a relatively small effect on the transport properties. For cargo transport by motors teams, binding defects also change the effective unbinding rate of the cargo particles and are expected to have a stronger effect.Comment: 20 pages, latex, 7 figures, 1 tabl

    Tissue Engineering of Skeletal Muscle

    Get PDF

    Dynamic Boundaries in Asymmetric Exclusion Processes

    Get PDF
    We investigate the dynamics of a one-dimensional asymmetric exclusion process with Langmuir kinetics and a fluctuating wall. At the left boundary, particles are injected onto the lattice; from there, the particles hop to the right. Along the lattice, particles can adsorb or desorb, and the right boundary is defined by a wall particle. The confining wall particle has intrinsic forward and backward hopping, a net leftward drift, and cannot desorb. Performing Monte Carlo simulations and using a moving-frame finite segment approach coupled to mean field theory, we find the parameter regimes in which the wall acquires a steady state position. In other regimes, the wall will either drift to the left and fall off the lattice at the injection site, or drift indefinitely to the right. Our results are discussed in the context of non-equilibrium phases of the system, fluctuating boundary layers, and particle densities in the lab frame versus the frame of the fluctuating wall.Comment: 13 page

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    Texture controls on the size distribution and properties of nano- and small microaggreates in soil

    Get PDF
    Soil microaggregates (SMA) with a size of <250 µm are one of the key factors influencing soil properties of ecological and structural relevance. In order to better understand their role in soil ecosystems, a quantitative understanding about the building units (BU) is necessary. The BU (divided into small SMA (<20 µm) and nanoparticles (NP, <220 nm)) where analyzed to quantify their size distribution and chemical composition. This approach will help to evaluate the properties of BU required for SMA formation.Soils with different clay contents of a Luvisol site (Scheyern, Germany) were fractionated into SMA and NP by wet sieving and pressure filtration. The differentiation between free and occluded BU was carried out by mechanical disaggregation using ultrasonic treatment. The size distribution of small SMA was analyzed with a XPT particle analyzer, while the abundance and chemical composition of NP were analyzed by field flow fractionation (AF4) coupled to a UV detector and ICP-MS.According to the mass distribution of the macroaggregate (8 mm-250 µm), large and small SMA fractions, the soils could be grouped into low (15, 18 and 19%) and high (28 and 30%) clay content. The proportion of occluded small and large SMA was increased with clay content. Interestingly the free small SMA proportion was constant and independent from clay content. Also the particle size distribution (PSD) of free small SMA did not correlate with clay content. The similar PSD of free and occluded small SMA was interpreted as a pool of potential BU for the formation of new aggregates. The NP showed three different size fractions. The evaluation of the elements Al, Si and Fe in these size fractions revealed different mass ratios and gave an insight into the composition of free and occluded NP

    TRPM8 is required for survival and radioresistance of glioblastoma cells

    Get PDF
    TRPM8 is a Ca2+^{2+}-permeable nonselective cation channel belonging to the melastatin sub-group of the transient receptor potential (TRP) family. TRPM8 is aberrantly overexpressed in a variety of tumor entities including glioblastoma multiforme where it reportedly contributes to tumor invasion. The present study aimed to disclose further functions of TRPM8 in glioma biology in particular upon cell injury by ionizing radiation. To this end, TCGA data base was queried to expose the TRPM8 mRNA abundance in human glioblastoma specimens and immunoblotting was performed to analyze the TRPM8 protein abundance in primary cultures of human glioblastoma. Moreover, human glioblastoma cell lines were irradiated with 6 MV photons and TRPM8 channels were targeted pharmacologically or by RNA interference. TRPM8 abundance, Ca2+^{2+} signaling and resulting K+^{+} channel activity, chemotaxis, cell migration, clonogenic survival, DNA repair, apoptotic cell death, and cell cycle control were determined by qRT-PCR, fura-2 Ca2+^{2+} imaging, patch-clamp recording, transfilter migration assay, wound healing assay, colony formation assay, immunohistology, flow cytometry, and immunoblotting. As a result, human glioblastoma upregulates TRPM8 channels to variable extent. TRPM8 inhibition or knockdown slowed down cell migration and chemotaxis, attenuated DNA repair and clonogenic survival, triggered apoptotic cell death, impaired cell cycle and radiosensitized glioblastoma cells. Mechanistically, ionizing radiation activated and upregulated TRPM8-mediated Ca2+^{2+} signaling that interfered with cell cycle control probably via CaMKII, cdc25C and cdc2. Combined, our data suggest that TRPM8 channels contribute to spreading, survival and radioresistance of human glioblastoma and, therefore, might represent a promising target in future anti-glioblastoma therapy

    Spatial distribution of organic carbon in the Atacama Desert, Chile

    Get PDF
    The Atacama Desert in northern Chile is known as the driest region on earth; however traces of life, can still be found. Soils are the habitat and reservoir for plants and microorganisms, which leave their fingerprints as organic residues. Here we identify and quantify organic carbon in soil profiles and along potential plant dispersal corridors in the Atacama Desert. We hypothesize that preferential pathways or barriers of the dispersal of life exist, which can be related to soil properties such as bulk density. We further assume that due to dust and salt accumulation at the surface, in particular the subsoils will reveal an unique though little explored archive of organic matter. The analytical assessment of Corg at very low levels is challenging. It was found that SOC in hyperarid soils ranged from 1.8 – 125 µg C per g soil for 0-1 m (1). We here present an improved Corg analysis, which is based on a temperature gradient method (DIN19539; Soli TOC cube, Elementar, Hanau). This allows combustion of samples with up to 5 g sample weight without the need to remove carbonate. This avoids loss and increases precision of Corg quantification at lowest concentrations. We can show that Corg contents decrease from 1.47 % to 0.1 % in the first 14 km of the gradient. However, first results suggest that within the hyper-arid core of the Atacama Corg contents increase. This gives first hints to the vegetation history of the desert and the dispersal of life

    On two-dimensional Bessel functions

    Get PDF
    The general properties of two-dimensional generalized Bessel functions are discussed. Various asymptotic approximations are derived and applied to analyze the basic structure of the two-dimensional Bessel functions as well as their nodal lines.Comment: 25 pages, 17 figure
    • …
    corecore