116 research outputs found

    Prion Protein Is a Key Determinant of Alcohol Sensitivity through the Modulation of N-Methyl-D-Aspartate Receptor (NMDAR) Activity

    Get PDF
    The prion protein (PrP) is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP−/−) mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt) control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion) to ethanol inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP−/− mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP−/− mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP−/− mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions

    Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cellular prion protein (PrPc) is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc) initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE) is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered.</p> <p>Method</p> <p>To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS) were generated. Mice were subsequently challenged with MOG<sub>35-55 </sub>peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells.</p> <p>Results</p> <p>First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells.</p> <p>Conclusions</p> <p>In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not synergize for disease worsening. These conclusions highlight the critical role of PrPc in maintaining the integrity of the CNS in situations of stress, especially during a neuroinflammatory insult.</p

    The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    Get PDF
    The conversion of the prion protein (PrP(C)) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrP(C) interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrP(C) constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrP(C) coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Seroepidemiological Study of Brucellosis in High Risk Groups in Boyerahmad 1384

    No full text
    ABSTRACT: Introduction & Objective: Brucellosis is a zoonotic disease that may have a major public health and economic impact in most countries. The disease appears as a Malt fever in humans and abortion in animals. This study was designed to determine the serologic titer of Brucella in high risk and non high risk people in Boyerahmad. Materials & Methods: A retrospective seroepidemiological study was performed on samples collected from 604 high risk and non high risk people using Rose Bengol test, tube standard test as a rapid test and 2 mercaptoethanol (2ME) and comb's wright as a confirmatory test. The data collected were analyzed by X2 test via SPSS. Results: Seroprevalence of Brucellosis in high risk people appeared to be high in the Rose Bengal and tube standard test (TST) 6.62 at titer ≥1/40 whereas for non high risk it was 0%. Confirmation test in high risk people was shown with 2ME in four people. Conclusion: Brucellosis is a major cause of disease in high risk people which can be due to direct or indirect contact with diary products of the related animals

    Comparison between self-etching and conventional primers in repeated bracket bonding

    No full text
    Background and Aim: This study aimed to evaluate the effect of repeated bonding by self-etching primers (SEPs) and a conventional phosphoric acid-etchant on shear bond strength (SBS), adhesive remnant index (ARI), and enamel morphology at different debonding time points. Materials and Methods: In this experimental study, 120 premolars were randomly divided into six groups of 20. In the first three groups, the brackets were bonded by Transbond XT, Transbond Plus, and Beauty Ortho Bond, and were debonded after 30 minutes. Adhesive remnants were removed from the enamel surface by a tungsten carbide bur. Rebonding was done with new brackets as described. The remaining three groups were debonded after aging. The SBS, ARI, and enamel surface morphology were evaluated. The SBS data were analyzed by two-way analysis of variance (ANOVA). The ARI scores were compared by using Mann-U-Whitney and Kruskal-Wallis tests. Results: The SBS of Transbond XT in the first debonding was significantly higher than that of Transbond Plus. Transbond Plus showed a higher SBS than Beauty Ortho Bond. In the second debonding, the SBS values of Transbond XT and Transbond Plus were not significantly different, but their SBS values were significantly higher than that of Beauty Ortho Bond. SEPs showed a higher bond strength in the second bonding compared to the first bonding. Scanning electron microscopy (SEM) showed more porosity in the enamel surface before the second bonding compared to the first bonding. The SBS of Beauty Ortho Bond significantly decreased after aging, and SEM images showed a gap at the resin-enamel interface. Conclusion: SEPs are recommended for secondary bonding in the clinical setting due to a decreased chair time, less damage to enamel, and an adequate bond strength

    A Comparison of Energy Consumption Prediction Models Based on Neural Networks of a Bioclimatic Building

    No full text
    Energy consumption has been increasing steadily due to globalization and industrialization. Studies have shown that buildings are responsible for the biggest proportion of energy consumption; for example in European Union countries, energy consumption in buildings represents around 40% of the total energy consumption. In order to control energy consumption in buildings, different policies have been proposed, from utilizing bioclimatic architectures to the use of predictive models within control approaches. There are mainly three groups of predictive models including engineering, statistical and artificial intelligence models. Nowadays, artificial intelligence models such as neural networks and support vector machines have also been proposed because of their high potential capabilities of performing accurate nonlinear mappings between inputs and outputs in real environments which are not free of noise. The main objective of this paper is to compare a neural network model which was designed utilizing statistical and analytical methods, with a group of neural network models designed benefiting from a multi objective genetic algorithm. Moreover, the neural network models were compared to a naïve autoregressive baseline model. The models are intended to predict electric power demand at the Solar Energy Research Center (Centro de Investigación en Energía SOLar or CIESOL in Spanish) bioclimatic building located at the University of Almeria, Spain. Experimental results show that the models obtained from the multi objective genetic algorithm (MOGA) perform comparably to the model obtained through a statistical and analytical approach, but they use only 0.8% of data samples and have lower model complexity
    corecore