228 research outputs found

    D3 branes in a Melvin universe: a new realm for gravitational holography

    Full text link
    The decoupling limit of a certain configuration of D3 branes in a Melvin universe defines a sector of string theory known as Puff Field Theory (PFT) - a theory with non-local dynamics but without gravity. In this work, we present a systematic analysis of the non-local states of strongly coupled PFT using gravitational holography. And we are led to a remarkable new holographic dictionary. We show that the theory admits states that may be viewed as brane protrusions from the D3 brane worldvolume. The footprint of a protrusion has finite size - the scale of non-locality in the PFT - and corresponds to an operator insertion in the PFT. We compute correlators of these states, and we demonstrate that only part of the holographic bulk is explored by this computation. We then show that the remaining space holographically encodes the dynamics of the D3 brane tentacles. The two sectors are coupled: in this holographic description, this is realized via quantum entanglement across a holographic screen - a throat in the geometry - that splits the bulk into the two regions in question. We then propose a description of PFT through a direct product of two Fock spaces - akin to other non-local settings that employ quantum group structures.Comment: 44 pages, 13 figures; v2: minor corrections, citations added; v3: typos corrected in section on local operators, some asymptotic expansions improved and made more consistent with rest of paper in section on non-local operator

    Heavy Fermion Quantum Effects in SU(2)_L Gauge Theory

    Full text link
    We explore the effects of a heavy fermion doublet in a simplified version of the standard electroweak theory. We integrate out the doublet and compute the exact effective energy functional of spatially varying gauge and Higgs fields. We perform a variational search for a local minimum of the effective energy and do not find evidence for a soliton carrying the quantum numbers of the decoupled fermion doublet. The fermion vacuum polarization energy offsets the gain in binding energy previously argued to be sufficient to stabilize a fermionic soliton. The existence of such a soliton would have been a natural way to maintain anomaly cancellation at the level of the states. We also see that the sphaleron energy is significantly increased due to the quantum corrections of the heavy doublet. We find that when the doublet is slightly heavier than the quantum--corrected sphaleron, its decay is exponentially suppressed owing to a new barrier. This barrier exists only for an intermediate range of fermion masses, and a heavy enough doublet is indeed unstable.Comment: 30 pages LaTeX, 3 eps-figure

    2+1 Dimensional Georgi-Glashow Instantons in Weyl Gauge

    Full text link
    Semiclassical instanton solutions in the 3D SU(2) Georgi-Glashow model are transformed into the Weyl gauge. This illustrates the tunneling interpretation of these instantons and provides a smooth regularization of the singular unitary gauge. The 3D Georgi-Glashow model has both instanton and sphaleron solutions, in contrast to 3D Yang-Mills theory which has neither, and 4D Yang-Mills theory which has instantons but no sphaleron, and 4D electroweak theory which has a sphaleron but no instantons. We also discuss the spectral flow picture of fundamental fermions in a Georgi-Glashow instanton background.Comment: 22 pages, 8 figures, revtex4; v2 - references and comments adde

    On the issue of imposing boundary conditions on quantum fields

    Full text link
    An interesting example of the deep interrelation between Physics and Mathematics is obtained when trying to impose mathematical boundary conditions on physical quantum fields. This procedure has recently been re-examined with care. Comments on that and previous analysis are here provided, together with considerations on the results of the purely mathematical zeta-function method, in an attempt at clarifying the issue. Hadamard regularization is invoked in order to fill the gap between the infinities appearing in the QFT renormalized results and the finite values obtained in the literature with other procedures.Comment: 13 pages, no figure

    Derivation, validation, and clinical relevance of a pediatric sepsis phenotype with persistent hypoxemia, encephalopathy, and shock

    Get PDF
    OBJECTIVES: Untangling the heterogeneity of sepsis in children and identifying clinically relevant phenotypes could lead to the development of targeted therapies. Our aim was to analyze the organ dysfunction trajectories of children with sepsis-associated multiple organ dysfunction syndrome (MODS) to identify reproducible and clinically relevant sepsis phenotypes and determine if they are associated with heterogeneity of treatment effect (HTE) to common therapies. DESIGN: Multicenter observational cohort study. SETTING: Thirteen PICUs in the United States. PATIENTS: Patients admitted with suspected infections to the PICU between 2012 and 2018. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We used subgraph-augmented nonnegative matrix factorization to identify candidate trajectory-based phenotypes based on the type, severity, and progression of organ dysfunction in the first 72 hours. We analyzed the candidate phenotypes to determine reproducibility as well as prognostic, therapeutic, and biological relevance. Overall, 38,732 children had suspected infection, of which 15,246 (39.4%) had sepsis-associated MODS with an in-hospital mortality of 10.1%. We identified an organ dysfunction trajectory-based phenotype (which we termed persistent hypoxemia, encephalopathy, and shock) that was highly reproducible, had features of systemic inflammation and coagulopathy, and was independently associated with higher mortality. In a propensity score-matched analysis, patients with persistent hypoxemia, encephalopathy, and shock phenotype appeared to have HTE and benefit from adjuvant therapy with hydrocortisone and albumin. When compared with other high-risk clinical syndromes, the persistent hypoxemia, encephalopathy, and shock phenotype only overlapped with 50%-60% of patients with septic shock, moderate-to-severe pediatric acute respiratory distress syndrome, or those in the top tier of organ dysfunction burden, suggesting that it represents a nonsynonymous clinical phenotype of sepsis-associated MODS. CONCLUSIONS: We derived and validated the persistent hypoxemia, encephalopathy, and shock phenotype, which is highly reproducible, clinically relevant, and associated with HTE to common adjuvant therapies in children with sepsis

    Early Use of Adjunctive Therapies for Pediatric Acute Respiratory Distress Syndrome:A PARDIE Study

    Get PDF
    Rationale: Few data exist to guide early adjunctive therapy use in pediatric acute respiratory distress syndrome (PARDS). Objectives: To describe contemporary use of adjunctive therapies for early PARDS as a framework for future investigations. Methods: This was a preplanned substudy of a prospective, international, cross-sectional observational study of children with PARDS from 100 centers over 10 study weeks. Measurements and Main Results: We investigated six adjunctive therapies for PARDS: continuous neuromuscular blockade, corticosteroids, inhaled nitric oxide (iNO), prone positioning, high-frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation. Almost half (45%) of children with PARDS received at least one therapy. Variability was noted in the median starting oxygenation index of each therapy; corticosteroids started at the lowest oxygenation index (13.0; interquartile range, 7.6–22.0) and HFOV at the highest (25.7; interquartile range, 16.7–37.3). Continuous neuromuscular blockade was the most common, used in 31%, followed by iNO (13%), corticosteroids (10%), prone positioning (10%), HFOV (9%), and extracorporeal membrane oxygenation (3%). Steroids, iNO, and HFOV were associated with comorbidities. Prone positioning and HFOV were more common in middle-income countries and less frequently used in North America. The use of multiple ancillary therapies increased over the first 3 days of PARDS, but there was not an easily identifiable pattern of combination or order of use. Conclusions: The contemporary description of prevalence, combinations of therapies, and oxygenation threshold for which the therapies are applied is important for design of future studies. Region of the world, income, and comorbidities influence adjunctive therapy use and are important variables to include in PARDS investigations

    Tacit collusion, firm asymmetries and numbers:evidence from EC merger cases

    Get PDF
    The purpose of this paper is to identify empirically the implicit structural model, especially the roles of size asymmetries and concentration, used by the European Commission to identify mergers with coordinated effects (i.e. collective dominance). Apart from its obvious policy-relevance, the paper is designed to shed empirical light on the conditions under which tacit collusion is most likely. We construct a database relating to 62 candidate mergers and find that, in the eyes of the Commission, tacit collusion in this context virtually never involves more than two firms and requires close symmetry in the market shares of the two firms

    Predicting Mortality in Children With Pediatric Acute Respiratory Distress Syndrome:A Pediatric Acute Respiratory Distress Syndrome Incidence and Epidemiology Study

    Get PDF
    OBJECTIVES: Pediatric acute respiratory distress syndrome is heterogeneous, with a paucity of risk stratification tools to assist with trial design. We aimed to develop and validate mortality prediction models for patients with pediatric acute respiratory distress syndrome. DESIGN: Leveraging additional data collection from a preplanned ancillary study (Version 1) of the multinational Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology study, we identified predictors of mortality. Separate models were built for the entire Version 1 cohort, for the cohort excluding neurologic deaths, for intubated subjects, and for intubated subjects excluding neurologic deaths. Models were externally validated in a cohort of intubated pediatric acute respiratory distress syndrome patients from the Children's Hospital of Philadelphia. SETTING: The derivation cohort represented 100 centers worldwide; the validation cohort was from Children's Hospital of Philadelphia. PATIENTS: There were 624 and 640 subjects in the derivation and validation cohorts, respectively. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The model for the full cohort included immunocompromised status, Pediatric Logistic Organ Dysfunction 2 score, day 0 vasopressor-inotrope score and fluid balance, and PaO2/FIO2 6 hours after pediatric acute respiratory distress syndrome onset. This model had good discrimination (area under the receiver operating characteristic curve 0.82), calibration, and internal validation. Models excluding neurologic deaths, for intubated subjects, and for intubated subjects excluding neurologic deaths also demonstrated good discrimination (all area under the receiver operating characteristic curve ≄ 0.84) and calibration. In the validation cohort, models for intubated pediatric acute respiratory distress syndrome (including and excluding neurologic deaths) had excellent discrimination (both area under the receiver operating characteristic curve ≄ 0.85), but poor calibration. After revision, the model for all intubated subjects remained miscalibrated, whereas the model excluding neurologic deaths showed perfect calibration. Mortality models also stratified ventilator-free days at 28 days in both derivation and validation cohorts. CONCLUSIONS: We describe predictive models for mortality in pediatric acute respiratory distress syndrome using readily available variables from day 0 of pediatric acute respiratory distress syndrome which outperform severity of illness scores and which demonstrate utility for composite outcomes such as ventilator-free days. Models can assist with risk stratification for clinical trials
    • 

    corecore