5,743 research outputs found

    Spin Gap in Two-Dimensional Heisenberg Model for CaV4_4O9_9

    Full text link
    We investigate the mechanism of spin gap formation in a two-dimensional model relevant to Mott insulators such as CaV4_4O9_9. From the perturbation expansion and quantum Monte Carlo calculations, the origin of the spin gap is ascribed to the four-site plaquette singlet in contrast to the dimer gap established in the generalized dimerized Heisenberg model.Comment: 8 pages, 6 figures available upon request (Revtex

    Phase diagram of depleted Heisenberg model for CaV4O9

    Full text link
    We have numerically investigated the 1/5-depleted Heisenberg square lattice representing CaV4O9 using the Quantum Monte Carlo loop algorithm. We have determined the phase diagram of the model as a function of the ratio of the two different couplings: bonds within a plaquette and dimer bonds between plaquettes. By calculating both the spin gap and the staggered magnetization we determine the range of stability of the long range ordered (LRO) phase. At isotropic coupling LRO survives the depletion. But the close vicinity of the isotropic point to the spin gap phase leads us to the conclusion that already a small frustrating next nearest neighbor interaction can drive the system into the quantum disordered phase and thus explain the spin gap behavior of CaV4O9

    An Examination of Chimpanzee Use in Human Cancer Research

    Get PDF
    Advocates of chimpanzee research claim the genetic similarity of humans and chimpanzees make them an indispensable research tool to combat human diseases. Given that cancer is a leading cause of human death worldwide, one might expect that if chimpanzees were needed for, or were productive in, cancer research, then they would have been widely used. This comprehensive literature analysis reveals that chimpanzees have scarcely been used in any form of cancer research, and that chimpanzee tumours are extremely rare and biologically different from human cancers. Often, chimpanzee citations described peripheral use of chimpanzee cells and genetic material in predominantly human genomic studies. Papers describing potential new cancer therapies noted significant concerns regarding the chimpanzee model. Other studies described interventions that have not been pursued clinically. Finally, available evidence indicates that chimpanzees are not essential in the development of therapeutic monoclonal antibodies. It would therefore be unscientific to claim that chimpanzees are vital to cancer research. On the contrary, it is reasonable to conclude that cancer research would not suffer, if the use of chimpanzees for this purpose were prohibited in the US. Genetic differences between humans and chimpanzees, make them an unsuitable model for cancer, as well as other human diseases

    Magnetic Susceptibility for CaV4O9CaV_4O_9

    Full text link
    We examine experimental magnetic susceptibility χtot(T)\chi^{tot}(T) for CaV4_4O9_9 by fitting with fitting function αχmag(T)+c\alpha \chi^{mag}(T) + c. The function χmag(T)\chi^{mag}(T) is a power series of 1/T and the lowest order term is fixed as C/TC/T, where CC is the Curie constant as determined by the experimental gg-value (g=1.96). Fitting parameters are α\alpha, cc and expansion coefficients except for the first one in χmag(T)\chi^{mag}(T). We determine α\alpha and cc as α\alpha \simeq 0.73 and cc\simeq 0 for an experimental sample. We interpret α\alpha as the volume fraction of CaV4_4O9_9 in the sample and χmag(T)\chi^{mag}(T) as the susceptibility for the pure CaV4_4O9_9. The result of α1\alpha \ne 1 means that the sample includes nonmagnetic components. This interpretation consists with the result of a perturbation theory and a neutron scattering experiment.Comment: 4pages, 4figure

    Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium

    Get PDF
    Self and kin discrimination are observed in most kingdoms of life and are mediated by highly polymorphic plasma membrane proteins. Sequence polymorphism, which is essential for effective recognition, is maintained by balancing selection. Dictyostelium discoideum are social amoebas that propagate as unicellular organisms but aggregate upon starvation and form fruiting bodies with viable spores and dead stalk cells. Aggregative development exposes Dictyostelium to the perils of chimerism, including cheating, which raises questions about how the victims survive in nature and how social cooperation persists. Dictyostelids can minimize the cost of chimerism by preferential cooperation with kin, but the mechanisms of kin discrimination are largely unknown. Dictyostelium lag genes encode transmembrane proteins with multiple immunoglobulin (Ig) repeats that participate in cell adhesion and signaling. Here, we describe their role in kin discrimination. We show that lagB1 and lagC1 are highly polymorphic in natural populations and that their sequence dissimilarity correlates well with wild-strain segregation. Deleting lagB1 and lagC1 results in strain segregation in chimeras with wild-type cells, whereas elimination of the nearly invariant homolog lagD1 has no such consequences. These findings reveal an early evolutionary origin of kin discrimination and provide insight into the mechanism of social recognition and immunity

    Effect of Quantum Fluctuations on Magnetic Ordering in CaV3_3O7_7

    Full text link
    We present a theoretical model for CaV3_3O7_7: the 1/41/4-depleted square spin-1/21/2 Heisenberg model which includes both the nearest-neighbor coupling (JJ) and the next-nearest-neighbor coupling (JJ'), where JJ and JJ' are antiferromagnetic. Recent experiments of the neutron diffraction by Harashina et.al. report the magnetic ordering at low temperatures, which may be called as a stripe phase. It is shown that the observed spin structure is not stable in the classical theory. By employing the modified spin wave theory, we show that the stripe phase is stabilized by the quantum fluctuations for J/J>0.69J'/J > 0.69. In CaV3_3O7_7, the coupling constants are estimated as JJJ \sim J' by comparing the theoretical and experimental results.Comment: submitted to J. Phys. Soc. Jp

    The Heisenberg model on the 1/5-depleted square lattice and the CaV4O9 compound

    Full text link
    We investigate the ground state structure of the Heisenberg model on the 1/5-depleted square lattice for arbitrary values of the first- and second-neighbor exchange couplings. By using a mean-field Schwinger-boson approach we present a unified description of the rich ground-state diagram, which include the plaquette and dimer resonant-valence-bond phases, an incommensurate phase and other magnetic orders with complex magnetic unit cells. We also discuss some implications of ours results for the experimental realization of this model in the CaV4O9 compound.Comment: 4 pages, Latex, 7 figures included as eps file

    Impurity Effect on Spin Ladder System

    Full text link
    Effects of nonmagnetic impurity doping in a spin ladder system with a spin gap are investigated by the exact diagonalization as well as by the variational Monte Carlo calculations. Substantial changes in macroscopic properties such as enhancements in spin correlations and magnetic susceptibilities are observed in the low impurity concentration region, which are caused by the increase of low-energy states. These results suggest that small but finite amount of nonmagnetic impurity doping relevantly causes the reduction or the vanishment of the spin gap. This qualitatively explains the experimental result of Zn-doped SrCu2_{2}O3_{3} where small doping induces gapless nature. We propose a possible scenario for this drastic change as a quantum phase transition in a spin gapped ladder system due to spinon doping effects.Comment: 14 pages LaTeX including 5 PS figure
    corecore