21 research outputs found

    Myogenic determination in Zebrafish is entirely dependent upon myf5 and myod but can be rescued by exogenous mrf4

    No full text
    Muscle regulatory factors activate myogenesis in all vertebrates, but their role has been studied in great detail only in the mouse embryo, where all but myogenin \u2013 Myod, Myf5 and Mrf4 \u2013 are sufficient to activate (albeit not completely) skeletal myogenesis. In the zebrafish embryo, myod and myf5 are required for induction of myogenesis because their simultaneous ablation prevents muscle development. Here we show that mrf4 but not myog can fully rescue myogenesis in the myod/myf5 double morphant via a selective and robust activation of myod, in keeping with its chromatin remodelling function in vitro. Rescue does not happen spontaneously, because the gene, unlike that in the mouse embryo, is expressed only at the onset of muscle differentiation, Moreover, because of the transient nature of morpholino inhibition, we were able to investigate how myogenesis occurs in the absence of a myotome. We report that in the complete absence of a myotome, subsequent myogenesis is abolished, whereas myogenesis does proceed, albeit abnormally, when the morpholino inhibition was not complete. Therefore our data also show that the early myotome is essential for subsequent skeletal muscle differentiation and patterning in the zebrafish

    Calprotectin levels in necrotizing enterocolitis: a systematic review of the literature

    No full text
    Background: Fecal calprotectin has been extensively investigated as a screening marker for the detection of necrotizing enterocolitis (NEC). However, there is a complete lack of consensus regarding its efficacy as a diagnostic test. Objective: The purpose of the present systematic review is to evaluate the effectiveness of fecal calprotectin as a screening marker for the detection of NEC. Materials and methods: We conducted a systematic review of studies published in the Medline (1966–2016), Scopus (2004–2016), ClinicalTrials.gov (2008–2016), Cochrane Central Register of Controlled Trials CENTRAL (1999–2016), and Google Scholar (2004–2016) databases, combined with studies found in the reference lists of the included studies. All prospective and retrospective observational cohort studies were included. Results: Thirteen studies that included 601 neonates were identified in the international literature. The presence and severity of NEC was evaluated with the modified Bell’s criteria. Ten studies found significantly elevated fecal calprotectin levels among infants with NEC (p < 0.05). One study found that this effect was observed irrespective of the stage of the disease. Five studies evaluated the efficacy of fecal calprotectin as a diagnostic test. The reported sensitivity ranged between 76 and 100 %, and the specificity varied from 39 to 96.4 %. However, the proposed cut-off values were not similar. Conclusion: Current evidence suggests that fecal calprotectin is elevated in newborns suffering from NEC. However, its significance as an early screening marker remains unknown. Future studies are needed and should focus on the identification of specific cut-off values. © 2016, Springer International Publishing

    The role of tissue oxygen tension in dengue virus replication

    No full text
    Low oxygen tension exerts a profound effect on the replication of several DNA and RNA viruses. In vitro propagation of Dengue virus (DENV) has been conventionally studied under atmospheric oxygen levels despite that in vivo, the tissue microenvironment is hypoxic. Here, we compared the efficiency of DENV replication in liver cells, monocytes, and epithelial cells under hypoxic and normoxic conditions, investigated the ability of DENV to induce a hypoxia response and metabolic reprogramming and determined the underlying molecular mechanism. In DENV-infected cells, hypoxia had no effect on virus entry and RNA translation, but enhanced RNA replication. Overexpression and silencing approaches as well as chemical inhibition and energy substrate exchanging experiments showed that hypoxia-mediated enhancement of DENV replication depends on the activation of the key metabolic regulators hypoxia-inducible factors 1α/2α (HIF-1α/2α) and the serine/threonine kinase AKT. Enhanced RNA replication correlates directly with an increase in anaerobic glycolysis producing elevated ATP levels. Additionally, DENV activates HIF and anaerobic glycolysis markers. Finally, reactive oxygen species were shown to contribute, at least in part through HIF, both to the hypoxia-mediated increase of DENV replication and to virus-induced hypoxic reprogramming. These suggest that DENV manipulates hypoxia response and oxygen-dependent metabolic reprogramming for efficient viral replication. © 2018 by the authors. Licensee MDPI, Basel, Switzerland

    Signaling Lymphocytic Activation Molecule Family Member 1 Engagement Inhibits T Cell-B Cell Interaction and Diminishes Interleukin-6 Production and Plasmablast Differentiation in Systemic Lupus Erythematosus.

    No full text
    Signaling lymphocytic activation molecule family member 1 (SLAMF1) homophilic interactions promote immunoglobulin production and T cell-B cell cross-talk. SLAMF1 is overexpressed on T and B cells in patients with systemic lupus erythematosus (SLE). This study was undertaken to determine the role of SLAMF1 monoclonal antibody (mAb) in modulating T cell-B cell interaction and B cell activation. Anti-IgM-prestimulated naive or total B cells from either healthy donors or patients with SLE were cocultured with autologous T cells under CD3/CD28 stimulation, in the presence or absence of the SLAMF1 mAb. Naive B cells were stimulated with anti-IgM and CD40L in the presence of the SLAMF1 antibody. Cytokine production by CD4+ T cells and B cells was examined by flow cytometry and/or quantitative polymerase chain reaction. Plasmablast formation and T cell and B cell conjugates were assessed by flow cytometry. IgG and antinuclear antibody production was determined by enzyme-linked immunosorbent assay. SLAMF1 ligation in a human peripheral blood T cell-B cell culture system reduced the following in both healthy controls and patients with SLE: conjugate formation, interleukin-6 (IL-6) production by B cells, IL-21 and IL-17A production by T cells, and Ig and autoantibody production. Whereas the SLAMF1 mAb directly affected the function of isolated peripheral B cells by decreasing IL-6 and Ig production in vitro, it did not affect cytokine production by isolated T cells stimulated in vitro. The SLAMF1 antibody inhibits T cell-B cell interaction and suppresses B cell cytokine production and differentiation, thereby acting as a potential therapeutic tool in the treatment of patients with SLE

    The role of tissue oxygen tension in dengue virus replication

    No full text
    Low oxygen tension exerts a profound effect on the replication of several DNA and RNA viruses. In vitro propagation of Dengue virus (DENV) has been conventionally studied under atmospheric oxygen levels despite that in vivo, the tissue microenvironment is hypoxic. Here, we compared the efficiency of DENV replication in liver cells, monocytes, and epithelial cells under hypoxic and normoxic conditions, investigated the ability of DENV to induce a hypoxia response and metabolic reprogramming and determined the underlying molecular mechanism. In DENV-infected cells, hypoxia had no effect on virus entry and RNA translation, but enhanced RNA replication. Overexpression and silencing approaches as well as chemical inhibition and energy substrate exchanging experiments showed that hypoxia-mediated enhancement of DENV replication depends on the activation of the key metabolic regulators hypoxia-inducible factors 1α/2α (HIF-1α/2α) and the serine/threonine kinase AKT. Enhanced RNA replication correlates directly with an increase in anaerobic glycolysis producing elevated ATP levels. Additionally, DENV activates HIF and anaerobic glycolysis markers. Finally, reactive oxygen species were shown to contribute, at least in part through HIF, both to the hypoxia-mediated increase of DENV replication and to virus-induced hypoxic reprogramming. These suggest that DENV manipulates hypoxia response and oxygen-dependent metabolic reprogramming for efficient viral replication. © 2018 by the authors. Licensee MDPI, Basel, Switzerland

    Epicardial Adipocyte-derived TNF-α Modulates Local Inflammation in Patients with Advanced Coronary Artery Disease

    No full text
    Background: Epicardial Adipose Tissue (EAT) surrounds the epicardium and can mediate harmful effects related to Coronary Artery Disease (CAD). Objective: We explored the regional differences between adipose stores surrounding diseased and non-diseased segments of coronary arteries in patients with advanced CAD. Methods: We enrolled 32 patients with known CAD who underwent coronary artery bypass graft (CABG) surgery. Inflammatory mediators were measured in EAT biopsies collected from a region of the Left Anterior Descending Artery (LAD) with severe stenosis (diseased segment) and without stenosis (non-diseased segment). Results: Mean age was 64.3±11.1 years, and mean EAT thickness was 7.4±1.9 mm. Dyslipidemia was the most prevalent comorbidity (81% of the patients). Out of a total of 11 cytokines, resistin (p=0.039), matrix metallopeptidase 9 (MMP-9) (p=0.020), C-C motif chemokine ligand 5 (CCL-5) (p=0.021), and follistatin (p=0.038) were significantly increased in the diseased compared with the non-diseased EAT segments. Indexed tumor necrosis factor-alpha (TNF-α), defined as the diseased to non-diseased cytokine levels ratio, was significantly correlated with increased EAT thickness both in the whole cohort (p=0.043) and in a subpopulation of patients with dyslipidemia (p=0.009). Treatment with lipid-lowering agents significantly decreased indexed TNF-α levels (p=0.015). No significant alterations were observed in the circulating levels of these cytokines with respect to CAD-associated comorbidities. Conclusion: Perivascular EAT is a source of cytokine secretion in distinct areas surrounding the coronary arteries in patients with advanced CAD. Adipocyte-derived TNF-α is a prominent mediator of local inflammation. © 2022 Bentham Science Publishers

    Expression patterns of signaling lymphocytic activation molecule family members in peripheral blood mononuclear cell subsets in patients with systemic lupus erythematosus

    Get PDF
    Genome-wide linkage analysis studies (GWAS) studies in systemic lupus erythematosus (SLE) identified the 1q23 region on human chromosome 1, containing the Signaling Lymphocytic Activation Molecule Family (SLAMF) cluster of genes, as a lupus susceptibility locus. The SLAMF molecules (SLAMF1-7) are immunoregulatory receptors expressed predominantly on hematopoietic cells. Activation of cells of the adaptive immune system is aberrant in SLE and dysregulated expression of certain SLAMF molecules has been reported. We examined the expression of SLAMF1-7 on peripheral blood T cells, B cells, monocytes, and their respective differentiated subsets, in patients with SLE and healthy controls in a systematic manner. SLAMF1 levels were increased on both T cell and B cells and their differentiated subpopulations in patients with SLE. SLAMF2 was increased on SLE CD4+ and CD8+ T cells. The frequency of SLAMF4+ and SLAMF7+ central memory and effector memory CD8+ T cells was reduced in SLE patients. Naïve CD4+ and CD8+ SLE T cells showed a slight increase in SLAMF3 levels. No differences were seen in the expression of SLAMF5 and SLAMF6 among SLE patients and healthy controls. Overall, the expression of various SLAMF receptors is dysregulated in SLE and may contribute to the immunopathogenesis of the disease
    corecore