113 research outputs found

    Compression load failure of aluminum plates due to fire

    Get PDF
    An experimental study was performed to quantify the response and failure of 5083-H116 and 6082-T6 aluminum plates under compression load while being subjected to a constant heat flux representing a fire exposure. Using an intermediate scale loading frame with integrated heating, the study evaluated the effects of geometry, aluminum type, fire exposure, load, and fire protection. Intermediate scale aluminum panels which were more than 0.7 m high and 0.2 m wide were used to gain insights into the structural behavior of large structural sections exposed to fire. Failure temperatures were measured to range from 100 to 480 C and were dependent on applied stress and aluminum type. This indicates that the use of a single temperature criterion in fire resistance without load as typically done is not sufficient for evaluating structural response during fire. An empirical failure model was developed to account for fire exposure conditions, aluminum type, and geometr

    Micromechanical finite element analyses of fire retardant woven fabric composites at elevated temperatures using unit cells at multiple length scales

    Get PDF
    This paper presents a micromechanical Finite Element (FE) model developed to predict the effective mechanical properties of glass fibre-reinforced (woven fabric) polymer composites with/without fire retardant particulate additives at elevated temperatures. The elevated mechanical properties of glass fibre-reinforced epoxy composites with/without fire retardants were predicted using three unit cells of varying length scales in micromechanical FE analysis. Theoretically predictions of flexural behaviour of these fibre-reinforced polymer composites at elevated temperatures were satisfactorily validated against experimentally measured data. The numerical model developed herein was then used for the prediction of other mechanical properties of fibre-reinforced polymer composites that would have been difficult to collect at elevated temperatures. Micromechanical FE models such as the one contained in this paper are useful to architectural engineers as they can be used to guide the design and qualification of new engineering composites that satisfy stringent Building codes in fire prone engineering applications

    Preparation and characterization of core/shell-like intumescent flame retardant and its application in Polypropylene

    Get PDF
    With a shell of starch-melamine-formaldehyde (SMF) resin, core/shell-like ammonium polyphosphate (SMFAPP) is prepared by in situ polymerization, and is characterized by SEM, FTIR and XPS. The shell leads SMFAPP a high water resistance and flame retardance compared with APP in polypropylene (PP). The flame retardant action of SMFAPP and APP in PP are studied using LOI, UL 94 test and cone calorimeter, and their thermal stability is evaluated by TG. The flame retardancy and water resistance of the PP/SMFAPP composite at the same loading is better than that of the PP/APP composite. UL 94 ratings of PP/SMFAPP can reach V-0 at 30 wt% loading. The flame retardant mechanism of SMFAPP was studied by dynamic FTIR, TG and cone calorimeter, etc

    Abdominal functional electrical stimulation to improve respiratory function after spinal cord injury: a systematic review and meta-analysis

    Get PDF
    Objectives: Abdominal functional electrical stimulation (abdominal FES) is the application of a train of electrical pulses to the abdominal muscles, causing them to contract. Abdominal FES has been used as a neuroprosthesis to acutely augment respiratory function and as a rehabilitation tool to achieve a chronic increase in respiratory function after abdominal FES training, primarily focusing on patients with spinal cord injury (SCI). This study aimed to review the evidence surrounding the use of abdominal FES to improve respiratory function in both an acute and chronic manner after SCI. Settings: A systematic search was performed on PubMed, with studies included if they applied abdominal FES to improve respiratory function in patients with SCI. Methods: Fourteen studies met the inclusion criteria (10 acute and 4 chronic). Low participant numbers and heterogeneity across studies reduced the power of the meta-analysis. Despite this, abdominal FES was found to cause a significant acute improvement in cough peak flow, whereas forced exhaled volume in 1 s approached significance. A significant chronic increase in unassisted vital capacity, forced vital capacity and peak expiratory flow was found after abdominal FES training compared with baseline. Conclusions: This systematic review suggests that abdominal FES is an effective technique for improving respiratory function in both an acute and chronic manner after SCI. However, further randomised controlled trials, with larger participant numbers and standardised protocols, are needed to fully establish the clinical efficacy of this technique

    Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium: Biomass Composite Materials

    Get PDF
    Mycelium and mycelium-biomass composites are emerging as new sustainable materials with useful flame-retardant potentials. Here we report a detailed characterisation of the thermal degradation and fire properties of fungal mycelium and mycelium-biomass composites. Measurements and analyses are carried out on key parameters such as decomposition temperatures, residual char, and gases evolved during pyrolysis. Pyrolysis flow combustion calorimetry (PCFC) evaluations reveal that the corresponding combustion propensity of mycelium is significantly lower compared to poly(methyl methacrylate) (PMMA) and polylactic acid (PLA), indicating that they are noticeably less prone to ignition and flaming combustion, and therefore safer to use. The hyphal diameters of mycelium decrease following pyrolysis. Cone calorimetry testing results show that the presence of mycelium has a positive influence on the fire reaction properties of wheat grains. This improvement is attributable to the relatively higher charring tendency of mycelium compared to wheat grain, which reduces the heat release rate (HRR) by acting as a thermal insulator and by limiting the supply of combustible gases to the flame front. The mycelium growth time has been found to yield no significant improvements in the fire properties of mycelium-wheat grain composites

    The effect of intumescent mat on post-fire performance of carbon fibre reinforced composites

    Get PDF
    This study investigated the effect of intumescent mats (M1 and M2) with different compositions on the post-fire performance of carbon fibre reinforced composites. The sandwich structure was designed for composites where M1 (carbon fibre reinforced composite-M1) or M2 (carbon fibre reinforced composite-M2) mats were covered on the composite surface. A significant reduction in the peak heat release rate and total heat release was observed from the cone calorimetric data, and carbon fibre reinforced composite-M1 showed the lowest value of 148 kW/m2 and 29 MJ/m2 for peak heat release rate and total heat release, respectively. In addition, a minor influence on mechanical properties was observed due to the variation of composite thickness and resin volume in the composite. The post-fire properties of composite were characterised, and the M1 mat presented better retention of flexural strength and modulus. The feasibility of two-layer model was confirmed to predict the post-fire performance of composites and reduce the reliance on the large amounts of empirical data. © The Author(s) 2019

    Synthesis of (cinnamate-zinc layered hydroxide) intercalation compound for sunscreen application

    Get PDF
    Background: Zinc layered hydroxide (ZLH) intercalated with cinnamate, an anionic form of cinnamic acid (CA), an efficient UVA and UVB absorber, have been synthesized by direct method using zinc oxide (ZnO) and cinnamic acid as the precursor. Results: The resulting obtained intercalation compound, ZCA, showed a basal spacing of 23.9 Å as a result of cinnamate intercalated in a bilayer arrangement between the interlayer spaces of ZLH with estimated percentage loading of cinnamate of about 40.4 % w/w. The UV–vis absorption spectrum of the intercalation compound showed excellent UVA and UVB absorption ability. Retention of cinnamate in ZLH interlayers was tested against media usually came across with sunscreen usage to show low release over an extended period of time. MTT assay of the intercalation compound on human dermal fibroblast (HDF) cells showed cytotoxicity of ZCA to be concentration dependent and is overall less toxic than its precursor, ZnO. Conclusions: (Cinnamate-zinc layered hydroxide) intercalation compound is suitable to be used as a safe and effective sunscreen with long UV protection effect
    corecore