1,120 research outputs found
Multi-Resolution Analysis and Fractional Quantum Hall Effect: an Equivalence Result
In this paper we prove that any multi-resolution analysis of \Lc^2(\R)
produces, for some values of the filling factor, a single-electron wave
function of the lowest Landau level (LLL) which, together with its (magnetic)
translated, gives rise to an orthonormal set in the LLL. We also give the
inverse construction. Moreover, we extend this procedure to the higher Landau
levels and we discuss the analogies and the differences between this procedure
and the one previously proposed by J.-P. Antoine and the author.Comment: Submitted to Journal Mathematical Physisc
Metal-Insulator Transition and Ferromagnetism in the Electron Doped Layered Manganites La2.3-xYxCa0.7Mn2O7 (x=0,0.3,0.5)
Bulk samples of La2.3-xYxCa0.7Mn2O7, x=0,0.3,0.5, with layered perovskite
structure have been synthesized and investigated with respect to their
electrical, electronic and magnetic properties. It is found that
La1.8Y0.5Ca0.7Mn2O7 has tetragonal structure and is a metallic ferromagnet with
a magnetic transition temperature of 170 K. The compound shows metallic
behavior below 140 K and has a large magnetoresistance (MR)
Delta-rho/rho(0)~94% at 100 K at 34 kOe. For x=0 and 0.3 the structure is
monoclinic with a suppression of metallicity. For x=0 the material is an
ferromagnetic insulator. We observed a large increase in the coefficient of the
linear term in specific heat with decreasing x. As far as we are aware, this is
the first report of an electron doped manganite showing metal-insulator
transition and ferromagnetism.Comment: 12 pages + 6 figures (postscript
Temperature-dependent soft x-ray photoemission and absorption studies of charge disproportionation in LaSrFeO
We have measured the temperature dependence of the photoemission and x-ray
absorption spectra of LaSrFeO (LSFO) epitaxial thin films with
, where charge disproportionation () resulting in long-range spin and charge ordering is known to occur
below K. With decreasing temperature we observed gradual changes
of the spectra with spectral weight transfer over a wide energy range of eV. Above the intensity at the Fermi level () was relatively
high compared to that below but still much lower than that in
conventional metals. We also found a similar temperature dependence for
, and to a lesser extent for . These observations suggest that a
local charge disproportionation occurs not only in the sample below
but also over a wider temperature and composition range in LSFO. This
implies that the tendency toward charge disproportionation may be the origin of
the unusually wide insulating region of the LSFO phase diagram.Comment: 6 pages, 8 figure
Evaluating insecticide resistance across African districts to aid malaria control decisions
Malaria vector control may be compromised by resistance to insecticides in vector populations. Actions to mitigate against resistance rely on surveillance using standard susceptibility tests, but there are large gaps in the monitoring data across Africa. Using a published geostatistical ensemble model, we have generated maps that bridge these gaps and consider the likelihood that resistance exceeds recommended thresholds. Our results show that this model provides more accurate next-year predictions than two simpler approaches. We have used the model to generate district-level maps for the probability that pyrethroid resistance in Anopheles gambiae s.l. exceeds the World Health Organization thresholds for susceptibility and confirmed resistance. In addition, we have mapped the three criteria for the deployment of piperonyl butoxide-treated nets that mitigate against the effects of metabolic resistance to pyrethroids. This includes a critical review of the evidence for presence of cytochrome P450-mediated metabolic resistance mechanisms across Africa. The maps for pyrethroid resistance are available on the IR Mapper website, where they can be viewed alongside the latest survey data
Effect of microstructural evolution on magnetic properties of Ni thin films
Copyright © Indian Academy of Sciences.The magnetic properties of Ni thin films, in the range 20–500 nm, at the crystalline-nanocrystalline interface are reported. The effect of thickness, substrate and substrate temperature has been studied. For the films deposited at ambient temperatures on borosilicate glass substrates, the crystallite size, coercive field and magnetization energy density first increase and achieve a maximum at a critical value of thickness and decrease thereafter. At a thickness of 50 nm, the films deposited at ambient temperature onto borosilicate glass, MgO and silicon do not exhibit long-range order but are magnetic as is evident from the non-zero coercive field and magnetization energy. Phase contrast microscopy revealed that the grain sizes increase from a value of 30–50 nm at ambient temperature to 120–150 nm at 503 K and remain approximately constant in this range up to 593 K. The existence of grain boundary walls of width 30–50 nm is demonstrated using phase contrast images. The grain boundary area also stagnates at higher substrate temperature. There is pronounced shape anisotropy as evidenced by the increased aspect ratio of the grains as a function of substrate temperature. Nickel thin films of 50 nm show the absence of long-range crystalline order at ambient temperature growth conditions and a preferred [111] orientation at higher substrate temperatures. Thin films are found to be thermally relaxed at elevated deposition temperature and having large compressive strain at ambient temperature. This transition from nanocrystalline to crystalline order causes a peak in the coercive field in the region of transition as a function of thickness and substrate temperature. The saturation magnetization on the other hand increases with increase in substrate temperature.University Grants Commission for Centre of Advanced Studies in Physic
Effect of B-site Dopants on Magnetic and Transport Properties of LaSrCoRuO
Effect of Co, Ru and Cu substitution at B and B' sites on the magnetic and
transport properties of LaSrCoRuO have been investigated. All the doped
compositions crystallize in the monoclinic structure in the space group
indicating a double perovskite structure. While the magnetization and
conductivity increase in Co and Ru doped compounds, antiferromagnetism is seen
to strengthen in the Cu doped samples. These results are explained on the basis
of a competition between linear Co-O-Ru-O-Co and perpendicular Co-O-O-Co
antiferromagnetic interactions and due to formation of Ru-O-Ru ferromagnetic
networks
Charge Ordering and Phase Competition in the Layered Perovskite Lasr2mn2o7
Charge-lattice fluctuations are observed in the layered perovskite manganite
LaSr2Mn2O7 by Raman spectroscopy as high as 340 K and with decreasing
temperature they become static and form a charge ordered (CO) phase below
TCO=210 K. In the static regime, superlattice reflections are observed through
neutron and x-ray diffraction with a propagation vector (h+1/4,k-1/4,l).
Crystallographic analysis of the CO state demonstrates that the degree of
charge and orbital ordering in this manganite is weaker than the charge
ordering in three dimensional perovskite manganites. A TN=170K a type-A
antiferromagnetism (AF) develops and competes with the charge ordering, that
eventually melts below T*=100K. High resolution diffraction measurements
suggest that that CO- and AF-states do not coincide within the same region in
the material but rather co-exist as separate phases. The transition to type-A
antiferromagnetism at lower temperatures is characterized by the competition
between these two phases.Comment: 9 pages, 6 figure
The Robinson Gravitational Wave Background Telescope (BICEP): a bolometric large angular scale CMB polarimeter
The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric
array designed to study the polarization of the cosmic microwave background
radiation (CMB) and galactic foreground emission. Such measurements probe the
energy scale of the inflationary epoch, tighten constraints on cosmological
parameters, and verify our current understanding of CMB physics. Robinson
consists of a 250-mm aperture refractive telescope that provides an
instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37
arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of
polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He
sorption fridge system, and coupled to incoming radiation via corrugated feed
horns. The all-refractive optics is cooled to 4 K to minimize polarization
systematics and instrument loading. The fully steerable 3-axis mount is capable
of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s.
Robinson has begun its first season of observation at the South Pole. Given the
measured performance of the instrument along with the excellent observing
environment, Robinson will measure the E-mode polarization with high
sensitivity, and probe for the B-modes to unprecedented depths. In this paper
we discuss aspects of the instrument design and their scientific motivations,
scanning and operational strategies, and the results of initial testing and
observations.Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter
Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275,
200
Magnetic anomalies in the spin chain system, SrCuZnIrO
We report the results of ac and dc magnetization (M) and heat-capacity (C)
measurements on the solid solution, SrCuZnIrO. While the Zn
end member is known to form in a rhombohedral pseudo one-dimensional
KCdCl structure with an antiferromagnetic ordering temperature of
(T =) 19 K, the Cu end member has been reported to form in a monoclinically
distorted form with a Curie temperature of (T =) 19 K. The magnetism of the
Zn compound is found to be robust to synthetic conditions and is broadly
consistent with the behavior known in the literature. However, we find a lower
magnetic ordering temperature (T) for our Cu compound (~ 13 K), thereby
suggesting that T is sensitive to synthetic conditions. The Cu sample
appears to be in a spin-glass-like state at low temperatures, judged by a
frequency dependence of ac magnetic susceptibility and a broadening of the C
anomaly at the onset of magnetic ordering, in sharp contrast to earlier
proposals. Small applications of magnetic field, however, drive this system to
ferromagnetism as inferred from the M data. Small substitutions for Cu/Zn (x =
0.75 or 0.25) significantly depress magnetic ordering; in other words, T
varies non-monotonically with x (T ~ 6, 3 and 4 K for x = 0.25, 0.5, and
0.67 respectively). The plot of inverse susceptibility versus temperature is
non-linear in the paramagnetic state as if correlations within (or among) the
magnetic chains continuously vary with temperature. The results establishComment: 7 pages, 7 figures, Revte
- …