298 research outputs found
Dynamic Control of a Novel Planar Cable-Driven Parallel Robot with a Large Wrench Feasible Workspace
Cable-Driven Parallel Robots (CDPRs) are special manipulators where rigid links are replaced with cables. The use of cables offers several advantages over the conventional rigid manipulators, one of the most interesting being their ability to cover large workspaces since cables are easily winded. However, this workspace coverage has its limitations due to the maximum permissible cable tensions, i.e., tension limitations cause a decrease in the Wrench Feasible Workspace (WFW) of these robots. To solve this issue, a novel design based in the addition of passive carriages to the robot frame of three degrees-of-freedom (3DOF) fully-constrained CDPRs is used. The novelty of the design allows reducing the variation in the cable directions and forces increasing the robot WFW; nevertheless, it presents a low stiffness along the x direction. This paper presents the dynamic model of the novel proposal together with a new dynamic control technique, which rejects the vibrations caused by the stiffness loss while ensuring an accurate trajectory tracking. The simulation results show that the controlled system presents a larger WFW than the conventional scheme of the CDPR, maintaining a good performance in the trajectory tracking of the end-effector. The novel proposal presented here can be applied in multiple planar applications
Cytochrome P450 from Plants: Platforms for Valuable Phytopharmaceuticals
Cytochrome P450 enzymes are important for biotechnology due to their capacity to modify diverse secondary metabolites that may produce chemicals with pharmacological properties. Most terpenes, flavonoids and alkaloids require P450 catalytic functions to reach their biological activity. In the last ten years, several efforts have focused on the expression and production of these three main types of secondary metabolites in engineered microorganisms and plants using P450 of ethnobotanical origin. Despite this, several P450 coding sequences from plant sources are discovered yearly but only a few have been screened by functional genomics. Amongst them, only a few have shown potentials for use in sustainable production of novel drugs and highly valuable products. Cytochrome P450 involvement in the biosynthesis of these products is discussed in this work.Keywords: Biotechnological platforms, Cytochrome P450, Phytopharmaceuticals, Yield improvement, Terpenes, Flavonoids, Alkaloids, Microbial expressio
Study of secondary muons detected within the tunnels of the Cholula pyramid
The pyramid of Cholula was built at the beginning of 100 B.C. and during of period of 500 years it was finished, had several new constructions, based on the previous constructions. The primarily material of construction is the adobe. Early in 1931 archaeological excavations began with the intention of exploring the interior of the pyramid, excavations were stopped in 1971, and to date no further excavations have been carried out. This work shows the first measurements of muons, particles that are very penetrating, these are generated by primary cosmic rays that was incoming in the atmosphere and these generates a rain of secondary particles, among them the muons. To measure this kind of particles was implemented a detector system, it is formed by a scintillator plastic coupled to a tube photomultiplier; the signals were acquired by mean of an oscilloscope. The detector was collocated near of the center of the pyramid; the location belongs to the maxima concentration in mass over the detector. Graphs of the charge distribution, maximum amplitude and characteristic rise times of the generated pulses in a plastic scintillator are shown, this is scintillator was synthesized in the materials laboratory of the FCFM-BUAP. In addition the optical characterization of the same was realized
Performance Evaluation of an Optoelectronic Oscillator Based on a Band-Pass Microwave Photonic Filter Architecture
The experimental performance evaluation of an optoelectronic oscillator based on a band-pass microwave photonic filter architecture is carried out. The novelty of this proposal resides in the fact that the architecture used allows enhancing the free spectral range of the optoelectronic oscillator. Considering the optical spectral characteristics of the multimode laser diode used as an optical source, the length and the chromatic dispersion parameter of the optical fiber which acts as a feedback loop, it is possible to determine the appearance of a series of spectrally pure microwave signals widely spaced. In particular, the experimental results show a phase noise as low as -92.69 dBc/Hz at 10 kHz offset frequency from the 2.26 GHz carrier for an optical delay line of 25.24 km and a Q factor of 2.04×109
Deciphering the role of histone modifications in uterine leiomyoma: acetylation of H3K27 regulates the expression of genes involved in proliferation, cell signaling, cell transport, angiogenesis and extracellular matrix formation
Uterine leiomyoma (UL) is a benign tumor arising from myometrium (MM) with a high prevalence and unclear pathology. Histone modifications are altered in tumors, particularly via histone acetylation which is correlated with gene activation. To identify if the acetylation of H3K27 is involved in UL pathogenesis and if its reversion may be a therapeutic option, we performed a prospective study integrating RNA-seq (n = 48) and CHIP-seq for H3K27ac (n = 19) in UL vs MM tissue, together with qRT-PCR of SAHA-treated UL cells (n = 10). CHIP-seq showed lower levels of H3K27ac in UL versus MM (p-value < 2.2 × 10−16). From 922 DEGs found in UL vs. MM (FDR < 0.01), 482 presented H3K27ac. A differential acetylation (FDR < 0.05) was discovered in 82 of these genes (29 hyperacetylated/upregulated, 53 hypoacetylated/downregulated). Hyperacetylation/upregulation of oncogenes (NDP,HOXA13,COL24A1,IGFL3) and hypoacetylation/downregulation of tumor suppressor genes (CD40,GIMAP8,IL15,GPX3,DPT) altered the immune system, the metabolism, TGFβ3 and the Wnt/β-catenin pathway. Functional enrichment analysis revealed deregulation of proliferation, cell signaling, transport, angiogenesis and extracellular matrix. Inhibition of histone deacetylases by SAHA increased expression of hypoacetylated/downregulated genes in UL cells (p < 0.05). Conclusively, H3K27ac regulates genes involved in UL onset and maintenance. Histone deacetylation reversion upregulates the expression of tumor suppressor genes in UL cells, suggesting targeting histone modifications as a therapeutic approach for UL
Universal primers for the amplification and sequence analysis pf actin-1 from diverse mosquito species
We report the development of universal primers for the reverse-transcription polymerase chain reaction (RT-PCR) amplification and nucleotide sequence analysis of actin cDNAs from taxonomically diverse mosquito species. Primers specific to conserved regions of the invertebrate actin-1 gene were designed after actin cDNA sequences of Anopheles gambiae, Bombyx mori, Drosophila melanogaster, and Caenorhabditis elegans. The efficacy of these primers was determined by RT-PCR with the use of total RNA from mosquitoes belonging to 30 species and 8 genera (Aedes, Anopheles, Culex, Deinocerites, Mansonia, Psorophora, Toxorhynchites, and Wyeomyia). The RT-PCR products were sequenced, and sequence data were used to design additional primers. One primer pair, denoted as Act-2F (5′-ATGGTCGGYATGGGNCAGAAGGACTC-3′) and Act-8R (5′-GATTCCATACCCAGGAAG-GADGG-3′), successfully amplified an RT-PCR product of the expected size (683-nt) in all mosquito spp. tested. We propose that this primer pair can be used as an internal control to test the quality of RNA from mosquitoes collected in vector surveillance studies. These primers can also be used in molecular experiments in which the detection, amplification or silencing of a ubiquitously expressed mosquito housekeeping gene is necessary. Sequence and phylogenetic data are also presented in this report
Related Factors of Anemia in Critically Ill Patients: A Prospective Multicenter Study
Anemia is common in critically ill patients; almost 95% of patients admitted to intensive care units (ICUs) have hemoglobin levels below normal. Several causes may explain this phenomenon as well as the tendency to transfuse patients without adequate cause: due to a lack of adherence to protocols, lack of supervision, incomplete transfusion request forms, or a lack of knowledge about the indications, risks, and costs of transfusions. Daily sampling to monitor the coagulation parameters and the acid–base balance can aggravate anemia as the main iatrogenic factor in its production. We studied the association and importance of iatrogenic blood loss and other factors in the incidence of anemia in ICUs. We performed a prospective, observational, multicenter study in five Spanish hospitals. A total of 142 patients with a median age of 58 years (IQI: 48–69), 71.83% male and 28.17% female, were admitted to ICUs without a diagnosis of iatrogenic anemia. During their ICU stay, anemia appeared in 66.90% of the sample, 95 patients, (95% CI: 58.51–74.56%). Risk factors associated with the occurrence of iatrogenic anemia were arterial catheter insertion (72.63% vs. 46.81%, p-value = 0.003), venous catheter insertion (87.37% vs. 72.34%, p-value = 0.023), drainages (33.68% vs. 12. 77%, p-value = 0.038), and ICU stay, where the longer the stay, the higher the rate of iatrogenic anemia (p-value < 0.001). We concluded that there was a statistical significance in the production of iatrogenic anemia due to the daily sampling for laboratory monitoring and critical procedures in intensive care units. The implementation of patient blood management programs could address these issues
Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis
Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age-and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients
- …