34 research outputs found

    Sensitivity analysis of the surface water- groundwater interaction for the sandy area of the Netherlands

    Get PDF
    The "Sensitivity Analysis of the Surface Water- Groundwater Interaction for the Sandy Area of the Netherlands" was carried out in the framework of a bilateral research project in support of the implementation of a nationwide geohydrological information system (REGIS) in the Netherlands. This project, conducted in cooperation between the TNO Institute for Applied Scientific Research (IGG-TNO) and !he Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO), is aimed at defining the information (variables and parameters) needed for efficient model use of the REGIS system, particularly with respect to the surface water- groundwater relation

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∼5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    Eur. J. Neurosci.

    No full text

    Long-term cognitive deficits accompanied by reduced neurogenesis after soman poisoning

    No full text
    To date, treatment of organophosphate (OP) poisoning shows several shortcomings, and OP-victims might suffer from lasting cognitive deficits and sleep-wake disturbances. In the present study, long-term effects of soman poisoning on learning ability, memory and neurogenesis were investigated in rats, treated with the anticholinergic atropine and the oxime HI-6 for reactivation of soman-inhibited acetylcholinesterase. We also investigated whether sub-chronic treatment with the reported neurogenesis enhancer olanzapine would stimulate neurogenesis and possibly normalize the anticipated long-term deleterious effects of soman intoxication. Animals were treated with HI-6 (125 mg/kg i.p.), followed after 30 min by soman (200 μg/kg s.c.) and atropine sulphate (16 mg/kg i.m.) 1 min thereafter. Soman poisoning led to an elevation of extracellular acetylcholine levels to 1500% over baseline values as assessed by striatal microdialysis. Brain acetylcholinesterase was inhibited over 95%. This was accompanied by short recurrent seizures lasting for 40 min. Osmotic minipumps releasing olanzapine (7.5 mg/kg/day) or vehicle were subcutaneously implanted 24 h post-intoxication. After drug delivery for 4 weeks, newborn cells were BrdU labeled. Learning and memory performance were assessed 8 weeks after soman poisoning, followed by analysis of surviving newborn cells (BrdU) and neurogenesis (doublecortin, DCX). Eight weeks after soman-intoxication a significantly impaired learning ability was found that was paralleled by significantly lower numbers of DCX-positive cells but no changes in the number of BrdU-labeled cells. Apparently, the present Olanzapine regime was ineffective. We conclude that soman poisoning has long lasting effects on learning ability, a finding that was accompanied by impaired neurogenesis. Although we confirm a correlation between impaired neurogenesis and cognitive deficits, establishing the true causal relationship between these processes in OP exposed animals awaits future research

    Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: Possible key role of placental 11β-hydroxysteroid dehydrogenase type 2

    No full text
    Prenatal stress (PS) produces persistent abnormalities in anxiety-related behaviors, stress responsivity, susceptibility to psychopathology and hippocampal changes in adult offspring. The hippocampus shows a remarkable degree of structural plasticity, notably in response to stress and glucocorticoids. We hypothesized that PS would differentially affect hippocampal neurogenesis in rats selectively bred for genetic differences in anxiety-related behaviors and stress responsivity. Pregnant dams of high anxiety-related behavior (HAB) and low anxiety-related behavior (LAB) strains were stressed between days 5 and 20 of pregnancy. The survival of newly generated hippocampal cells was found to be significantly lower in 43-day-old HAB than in LAB male offspring of unstressed pregnancies. PS further reduced newly generated cell numbers only in HAB rats, and this was paralleled by a reduction in doublecortin-positive cell numbers, indicative of reduced neurogenesis. As maternal plasma corticosterone levels during PS were similar in both strains, we examined placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which catalyses rapid inactivation of maternal corticosterone to inert 11-dehydrocorticosterone and thus serves as a physiological 'barrier' to maternal glucocorticoids. PS significantly increased placental 11β-HSD2 activity in LAB, but not HAB, rats. We conclude that PS differentially affects the number of surviving newly generated cells and neurogenesis in HAB and LAB rats. The high sensitivity of hippocampal neurogenesis to PS in HAB rats is paralleled by a failure to increase placental 11β-HSD2 activity after stress rather than by different maternal corticosterone responses. Hence, stress-induced placental 11β-HSD2 expression may be critical in protecting the fetal brain from maternal stress-induced effects on adult neurogenesis

    Neurofibroma-Associated Macrophages Play Roles in Tumor Growth and Response to Pharmacological Inhibition

    No full text
    Neurofibromatosis type 1 (NF1) is a common genetic disease that predisposes 30–50 % of affected individuals to develop plexiform neurofibromas. We found that macrophage infiltration of both mouse and human neurofibromas correlates with disease progression. Macrophages accounted for almost half of neurofibroma cells, leading us to hypothesize that nerve macrophages are inflammatory effectors in neurofibroma development and/or growth. We tested the effects of PLX3397, a dual kit/fms kinase inhibitor that blocks macrophage infiltration, in the Dhh-Cre; Nf1 flox/flox mouse model of GEM grade I neurofibroma. In mice aged 1–4 months, prior to development of nerve pathology and neurofibroma formation, PLX3397 did not impair tumor initiation and increased tumor volume compared to controls. However, in mice aged 7–9 months, after tumor establishment, a subset of mice demonstrating the largest reductions in macrophages after PLX3397 exhibited cell death and tumor volume regression. Macrophages are likely to provide an initial line of defense against developing tumors. Once tumors are established, they become tumor permissive. Macrophage depletion may result in impaired tumor maintenance and represent a therapeutic strategy for neurofibroma therapy

    Neurofibroma-Associated Macrophages Play Roles in Tumor Growth and Response to Pharmacological Inhibition

    No full text
    Neurofibromatosis type 1 (NF1) is a common genetic disease that predisposes 30–50 % of affected individuals to develop plexiform neurofibromas. We found that macrophage infiltration of both mouse and human neurofibromas correlates with disease progression. Macrophages accounted for almost half of neurofibroma cells, leading us to hypothesize that nerve macrophages are inflammatory effectors in neurofibroma development and/or growth. We tested the effects of PLX3397, a dual kit/fms kinase inhibitor that blocks macrophage infiltration, in the Dhh-Cre; Nf1 flox/flox mouse model of GEM grade I neurofibroma. In mice aged 1–4 months, prior to development of nerve pathology and neurofibroma formation, PLX3397 did not impair tumor initiation and increased tumor volume compared to controls. However, in mice aged 7–9 months, after tumor establishment, a subset of mice demonstrating the largest reductions in macrophages after PLX3397 exhibited cell death and tumor volume regression. Macrophages are likely to provide an initial line of defense against developing tumors. Once tumors are established, they become tumor permissive. Macrophage depletion may result in impaired tumor maintenance and represent a therapeutic strategy for neurofibroma therapy
    corecore