4,513 research outputs found
Recommended from our members
On the adequacy of current empirical evaluations of formal models of categorization
Categorization is one of the fundamental building blocks of cognition, and the study of categorization is notable for the extent to which formal modeling has been a central and influential component of research. However, the field has seen a proliferation of noncomplementary models with little consensus on the relative adequacy of these accounts. Progress in assessing the relative adequacy of formal categorization models has, to date, been limited because (a) formal model comparisons are narrow in the number of models and phenomena considered and (b) models do not often clearly define their explanatory scope. Progress is further hampered by the practice of fitting models with arbitrarily variable parameters to each data set independently. Reviewing examples of good practice in the literature, we conclude that model comparisons are most fruitful when relative adequacy is assessed by comparing well-defined models on the basis of the number and proportion of irreversible, ordinal, penetrable successes (principles of minimal flexibility, breadth, good-enough precision, maximal simplicity, and psychological focus)
Aging and memory properties of topologically frustrated magnets
The model 2d kagome system (H3O)Fe3(SO4)2(OH)6 and the 3d pyrochlore Y2Mo2O7
are two well characterized examples of low-disordered frustrated
antiferromagnets which rather then condensing into spin liquid have been found
to undergo a freezing transition with spin glass-like properties. We explore
more deeply the comparison of their properties with those of spin glasses, by
the study of characteristic rejuvenation and memory effects in the
non-stationary susceptibility. While the pyrochlore shows clear evidence for
these non-trivial effects, implying temperature selective aging, that is
characteristic of a wide hierarchical distribution of equilibration processes,
the kagome system does n not show clearly these effects. Rather, it seems to
evolve towards the same final state independently of temperature.Comment: submitted for the proceedings of the 46th MMM conference (Seattle,
2001
Design specification for LARSYS procedure 1
There are no author-identified significant results in this report
Magnetism in Atomic-Sized Palladium Contacts and Nanowires
We have investigated Pd nanowires theoretically, and found that, unlike
either metallic or free atomic Pd, they exhibit Hund's rule magnetism. In long,
monoatomic wires, we find a spin moment of 0.7 Bohr magnetons per atom, whereas
for short, monoatomic wires between bulk leads, the predicted moment is about
0.3 Bohr magnetons per wire atom. In contrast, a coaxial (6,1) wire was found
to be nonmagnetic. The origin of the wire magnetism is analyzed.Comment: 6 pages, including 4 figure
Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet
The search for the resonating valence bond (RVB) state continues to underpin
many areas of condensed matter research. The RVB is made from the dimerisation
of spins on different sites into fluctuating singlets, and was proposed by
Anderson to be the reference state from which the transition to BCS
superconductivity occurs. Little is known about the state experimentally, due
to the scarcity of model materials. Theoretical work has put forward the S =
1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of
the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM
Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good
approximation to a 2-dimensional kagome antiferromagnet and that susceptibility
data indicate a collapse of the magnetic moment below T = 25 K that is
compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure
Recommended from our members
On the adequacy of Bayesian evaluations of categorization models: Reply to Vanpaemel and Lee (2012)
Vanpaemel and Lee (2012) argue, and we agree, that the comparison of formal models can be facilitated by Bayesian methods. However, Bayesian methods neither precede nor supplant our proposals (Wills & Pothos, 2012), as Bayesian methods can be applied both to our proposals and to their polar opposites. Furthermore, the use of Bayesian methods to control for model complexity can be actively misleading when combined with the consideration of narrow data sets, and significant development work is required before Bayesian methods can be applied to some of the leading formal models of categorization. Even where Bayesian methods can be applied, the use of non-Bayesian methods is sometimes preferable due to their computational simplicity (Vanpaemel & Storms, 2010). We also clarify our position on arbitrarily variable parameters, and on the relationship between ordinal properties and overfitting
Solar Coronal Structures and Stray Light in TRACE
Using the 2004 Venus transit of the Sun to constrain a semi-empirical
point-spread function for the TRACE EUV solar telescope, we have measured the
effect of stray light in that telescope. We find that 43% of 171A EUV light
that enters TRACE is scattered, either through diffraction off the entrance
filter grid or through other nonspecular effects. We carry this result forward,
via known-PSF deconvolution of TRACE images, to identify its effect on analysis
of TRACE data. Known-PSF deconvolution by this derived PSF greatly reduces the
effect of visible haze in the TRACE 171A images, enhances bright features, and
reveals that the smooth background component of the corona is considerably less
bright (and hence much more rarefied) than commonly supposed. Deconvolution
reveals that some prior conlclusions about the Sun appear to have been based on
stray light in the images. In particular, the diffuse background "quiet corona"
becomes consistent with hydrostatic support of the coronal plasma; feature
contrast is greatly increased, possibly affecting derived parameters such as
the form of the coronal heating function; and essentially all existing
differential emission measure studies of small features appear to be affected
by contamination from nearby features. We speculate on further implications of
stray light for interpretation of EUV images from TRACE and similar
instruments, and advocate deconvolution as a standard tool for image analysis
with future instruments such as SDO/AIA.Comment: Accepted by APJ; v2 reformatted to single-column format for online
readabilit
Site Characterization Using Integrated Imaging Analysis Methods on Satellite Data of the Islamabad, Pakistan, Region
We develop an integrated digital imaging analysis approach to produce a first-approximation site characterization map for Islamabad, Pakistan, based on remote-sensing data. We apply both pixel-based and object-oriented digital imaging analysis methods to characterize detailed (1:50,000) geomorphology and geology from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. We use stereo-correlated relative digital elevation models (rDEMs) derived from ASTER data, as well as spectra in the visible near-infrared (VNIR) to thermal infrared (TIR) domains. The resulting geomorphic units in the study area are classified as mountain (including the Margala Hills and the Khairi Murat Ridge), piedmont, and basin terrain units. The local geologic units are classified as limestone in the Margala Hills and the Khairi Murat Ridge and sandstone rock types for the piedmonts and basins. Shear-wave velocities for these units are assigned in ranges based on established correlations in California. These ranges include Vs30-values to be greater than 500 m/sec for mountain units, 200–600 m/sec for piedmont units, and less than 300 m/sec for basin units. While the resulting map provides the basis for incorporating site response in an assessment of seismic hazard for Islamabad, it also demonstrates the potential use of remote-sensing data for site characterization in regions where only limited conventional mapping has been done
Aging in a topological spin glass
We have examined the nonconventional spin glass phase of the 2-dimensional
kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc
magnetic measurements. The frequency dependence of the ac susceptibility peak
is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature
below Tg, aging effects are found which obey the same scaling law as in spin
glasses or polymers. However, in clear contrast with conventional spin glasses,
aging is remarkably insensitive to temperature changes. This particular type of
dynamics is discussed in relation with theoretical predictions for highly
frustrated non-disordered systems.Comment: 4 pages, 4 figure
- …