4,513 research outputs found

    Aging and memory properties of topologically frustrated magnets

    Full text link
    The model 2d kagome system (H3O)Fe3(SO4)2(OH)6 and the 3d pyrochlore Y2Mo2O7 are two well characterized examples of low-disordered frustrated antiferromagnets which rather then condensing into spin liquid have been found to undergo a freezing transition with spin glass-like properties. We explore more deeply the comparison of their properties with those of spin glasses, by the study of characteristic rejuvenation and memory effects in the non-stationary susceptibility. While the pyrochlore shows clear evidence for these non-trivial effects, implying temperature selective aging, that is characteristic of a wide hierarchical distribution of equilibration processes, the kagome system does n not show clearly these effects. Rather, it seems to evolve towards the same final state independently of temperature.Comment: submitted for the proceedings of the 46th MMM conference (Seattle, 2001

    Design specification for LARSYS procedure 1

    Get PDF
    There are no author-identified significant results in this report

    Magnetism in Atomic-Sized Palladium Contacts and Nanowires

    Get PDF
    We have investigated Pd nanowires theoretically, and found that, unlike either metallic or free atomic Pd, they exhibit Hund's rule magnetism. In long, monoatomic wires, we find a spin moment of 0.7 Bohr magnetons per atom, whereas for short, monoatomic wires between bulk leads, the predicted moment is about 0.3 Bohr magnetons per wire atom. In contrast, a coaxial (6,1) wire was found to be nonmagnetic. The origin of the wire magnetism is analyzed.Comment: 6 pages, including 4 figure

    Toward Perfection: Kapellasite, Cu3Zn(OH)6Cl2, a New Model S = 1/2 Kagome Antiferromagnet

    Full text link
    The search for the resonating valence bond (RVB) state continues to underpin many areas of condensed matter research. The RVB is made from the dimerisation of spins on different sites into fluctuating singlets, and was proposed by Anderson to be the reference state from which the transition to BCS superconductivity occurs. Little is known about the state experimentally, due to the scarcity of model materials. Theoretical work has put forward the S = 1/2 kagome antiferromagnet (KAFM) as a good candidate for the realization of the RVB state. In this paper we introduce a new model system, the S = 1/2 KAFM Kapellasite, Cu3Zn(OH)6Cl2. We show that its crystal structure is a good approximation to a 2-dimensional kagome antiferromagnet and that susceptibility data indicate a collapse of the magnetic moment below T = 25 K that is compatible with the spins condensing into the non-magnetic RVB state.Comment: Communication, 3 pages, 3 figure

    Solar Coronal Structures and Stray Light in TRACE

    Full text link
    Using the 2004 Venus transit of the Sun to constrain a semi-empirical point-spread function for the TRACE EUV solar telescope, we have measured the effect of stray light in that telescope. We find that 43% of 171A EUV light that enters TRACE is scattered, either through diffraction off the entrance filter grid or through other nonspecular effects. We carry this result forward, via known-PSF deconvolution of TRACE images, to identify its effect on analysis of TRACE data. Known-PSF deconvolution by this derived PSF greatly reduces the effect of visible haze in the TRACE 171A images, enhances bright features, and reveals that the smooth background component of the corona is considerably less bright (and hence much more rarefied) than commonly supposed. Deconvolution reveals that some prior conlclusions about the Sun appear to have been based on stray light in the images. In particular, the diffuse background "quiet corona" becomes consistent with hydrostatic support of the coronal plasma; feature contrast is greatly increased, possibly affecting derived parameters such as the form of the coronal heating function; and essentially all existing differential emission measure studies of small features appear to be affected by contamination from nearby features. We speculate on further implications of stray light for interpretation of EUV images from TRACE and similar instruments, and advocate deconvolution as a standard tool for image analysis with future instruments such as SDO/AIA.Comment: Accepted by APJ; v2 reformatted to single-column format for online readabilit

    Site Characterization Using Integrated Imaging Analysis Methods on Satellite Data of the Islamabad, Pakistan, Region

    Get PDF
    We develop an integrated digital imaging analysis approach to produce a first-approximation site characterization map for Islamabad, Pakistan, based on remote-sensing data. We apply both pixel-based and object-oriented digital imaging analysis methods to characterize detailed (1:50,000) geomorphology and geology from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery. We use stereo-correlated relative digital elevation models (rDEMs) derived from ASTER data, as well as spectra in the visible near-infrared (VNIR) to thermal infrared (TIR) domains. The resulting geomorphic units in the study area are classified as mountain (including the Margala Hills and the Khairi Murat Ridge), piedmont, and basin terrain units. The local geologic units are classified as limestone in the Margala Hills and the Khairi Murat Ridge and sandstone rock types for the piedmonts and basins. Shear-wave velocities for these units are assigned in ranges based on established correlations in California. These ranges include Vs30-values to be greater than 500 m/sec for mountain units, 200–600 m/sec for piedmont units, and less than 300 m/sec for basin units. While the resulting map provides the basis for incorporating site response in an assessment of seismic hazard for Islamabad, it also demonstrates the potential use of remote-sensing data for site characterization in regions where only limited conventional mapping has been done

    Aging in a topological spin glass

    Full text link
    We have examined the nonconventional spin glass phase of the 2-dimensional kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc magnetic measurements. The frequency dependence of the ac susceptibility peak is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature below Tg, aging effects are found which obey the same scaling law as in spin glasses or polymers. However, in clear contrast with conventional spin glasses, aging is remarkably insensitive to temperature changes. This particular type of dynamics is discussed in relation with theoretical predictions for highly frustrated non-disordered systems.Comment: 4 pages, 4 figure
    • …
    corecore