3,798 research outputs found

    Suppressing sensorimotor activity modulates the discrimination of auditory emotions but not speaker identity

    Get PDF
    Our ability to recognize the emotions of others is a crucial feature of human social cognition. Functional neuroimaging studies indicate that activity in sensorimotor cortices is evoked during the perception of emotion. In the visual domain, right somatosensory cortex activity has been shown to be critical for facial emotion recognition. However, the importance of sensorimotor representations in modalities outside of vision remains unknown. Here we use continuous theta-burst transcranial magnetic stimulation (cTBS) to investigate whether neural activity in the right postcentral gyrus (rPoG) and right lateral premotor cortex (rPM) is involved in nonverbal auditory emotion recognition. Three groups of participants completed same-different tasks on auditory stimuli, discriminating between the emotion expressed and the speakers' identities, before and following cTBS targeted at rPoG, rPM, or the vertex (control site). A task-selective deficit in auditory emotion discrimination was observed. Stimulation to rPoG and rPM resulted in a disruption of participants' abilities to discriminate emotion, but not identity, from vocal signals. These findings suggest that sensorimotor activity may be a modality-independent mechanism which aids emotion discrimination. Copyright © 2010 the authors

    Temperature dependence of the band gap of 28Si:P at very low temperatures measured via time-resolved optical spectroscopy

    Get PDF
    We measure the temperature dependence of the indirect band gap of isotopically purified 28Si:P in the regime from 0.1 K to 3 K by high-resolution absorption spectroscopy of the donor bound exciton transition. The measurements increase the up-to-date precision of the temperature-dependent band gap change by more than one order of magnitude and reveal a T4 dependence which is about a factor of two less than observed in previous measurements. Such a T4 dependence is predicted by theory, but the absolute values differ between our experiment and the most up-to-date calculations by a factor of 30, corroborating that the electron-phonon interaction at low temperatures is still not correctly included into theory. What is more, the ability of such very high-precision band-gap measurements facilitates the use of time- and spatially resolved 28Si:P absorption as a contactless, local thermometer and electric field sensor with a demonstrated time resolution of milliseconds

    Low Temperature Relaxation of Donor Bound Electron Spins in 28Si:P

    Get PDF
    We measure the spin-lattice relaxation of donor bound electrons in ultrapure, isotopically enriched, phosphorus-doped 28Si:P. The optical pump-probe experiments reveal at low temperatures extremely long spin relaxation times which exceed 20 h. The 28Si:P spin relaxation rate increases linearly with temperature in the regime below 1 K and shows a distinct transition to a T9 dependence which dominates the spin relaxation between 2 and 4 K at low magnetic fields. The T7 dependence reported for natural silicon is absent. At high magnetic fields, the spin relaxation is dominated by the magnetic field dependent single phonon spin relaxation process. This process is well documented for natural silicon at finite temperatures but the 28Si:P measurements validate additionally that the bosonic phonon distribution leads at very low temperatures to a deviation from the linear temperature dependence of Γ as predicted by theory

    Low Temperature Relaxation of Donor Bound Electron Spins in Si 28: P

    Get PDF
    We measure the spin-lattice relaxation of donor bound electrons in ultrapure, isotopically enriched, phosphorus-doped Si28:P. The optical pump-probe experiments reveal at low temperatures extremely long spin relaxation times which exceed 20 h. The Si28:P spin relaxation rate increases linearly with temperature in the regime below 1 K and shows a distinct transition to a T9 dependence which dominates the spin relaxation between 2 and 4 K at low magnetic fields. The T7 dependence reported for natural silicon is absent. At high magnetic fields, the spin relaxation is dominated by the magnetic field dependent single phonon spin relaxation process. This process is well documented for natural silicon at finite temperatures but the Si28:P measurements validate additionally that the bosonic phonon distribution leads at very low temperatures to a deviation from the linear temperature dependence of Γ as predicted by theory

    Fluorescence during Doppler cooling of a single trapped atom

    Full text link
    We investigate the temporal dynamics of Doppler cooling of an initially hot single trapped atom in the weak binding regime using a semiclassical approach. We develop an analytical model for the simplest case of a single vibrational mode for a harmonic trap, and show how this model allows us to estimate the initial energy of the trapped particle by observing the fluorescence rate during the cooling process. The experimental implementation of this temperature measurement provides a way to measure atom heating rates by observing the temperature rise in the absence of cooling. This method is technically relatively simple compared to conventional sideband detection methods, and the two methods are in reasonable agreement. We also discuss the effects of RF micromotion, relevant for a trapped atomic ion, and the effect of coupling between the vibrational modes on the cooling dynamics.Comment: 12 pages, 11 figures, Submitted to Phys. Rev.

    Diffractive J/ΨJ/\Psi photoproduction at large momentum transfer in coherent hadron - hadron interactions at CERN LHC

    Full text link
    The vector meson production in coherent hadron-hadron interactions at LHC energies is studied assuming that the color singlet tt-channel exchange carries large momentum transfer. We consider the non-forward solution of the BFKL equation at high energy and large momentum transfer and estimate the rapidity distribution and total cross section for the process h1h2h1J/ΨXh_1 h_2 \to h_1 J/\Psi X, where hih_i can be a proton or a nucleus. We predict large rates, which implies that the experimental identification can be feasible at the LHC.Comment: 10 pages, 5 figures, 1 table. Version to be published in Physical Review

    Double diffractive meson production and the BFKL Pomeron at e+ee^+e^- colliders

    Full text link
    In this Letter we study the double diffractive vector meson production in e+ee^+e^- collisions assuming the dominance of the BFKL pomeron exchange. We consider the non-forward solution of the BFKL equation at high energy and large momentum transfer and estimate the total cross section for the process e+ee+eV1V2e^+e^- \to e^+e^- V_1 V_2 with antitagged e+e^+ and ee^-, where V1V_1 and V2V_2 can be any two vector mesons (Vi=ρ,ω,ϕ,J/Ψ,ΥV_i = \rho, \omega, \phi, J/\Psi, \Upsilon). The event rates for the future linear colliders are given.Comment: 8 pages, 1 figure, Version to be published in Physical Review

    Symmetric qubits from cavity states

    Full text link
    Two-mode cavities can be prepared in quantum states which represent symmetric multi-qubit states. However, the qubits are impossible to address individually and as such cannot be independently measured or otherwise manipulated. We propose two related schemes to coherently transfer the qubits which the cavity state represents onto individual atoms, so that the qubits can then be processed individually. In particular, our scheme can be combined with the quantum cloning scheme of Simon and coworkers [C. Simon et al, PRL 84, 2993 (2000)] to allow the optimal clones which their scheme produces to be spatially separated and individually utilized.Comment: 8 pages, 4 figures, minor typographical errors correcte

    Oscillatory Energy Exchange Between Waves Coupled by a Dynamic Artificial Crystal

    Full text link
    We describe a general mechanism of controllable energy exchange between waves propagating in a dynamic artificial crystal. We show that if a spatial periodicity is temporarily imposed on the transmission properties of a wave-carrying medium whilst a wave is inside, this wave is coupled to a secondary counter-propagating wave and energy oscillates between the two. The oscillation frequency is determined by the width of the spectral band gap created by the periodicity and the frequency difference between the coupled waves. The effect is demonstrated with spin waves in a dynamic magnonic crystal.Comment: 5 pages, 4 figure

    Back-Reaction In Lightcone QED

    Get PDF
    We consider the back-reaction of quantum electrodynamics upon an electric field E(x_+) = - A'_-(x_+) which is parallel to x^3 and depends only on the lightcone coordinate x_+ = (x^0 + x^3)/\sqrt{2}. Novel features are that the mode functions have simple expressions for arbitrary A_-(x_+), and that one cannot ignore the usual lightcone ambiguity at zero + momentum. Each mode of definite canonical momenta k_+ experiences pair creation at the instant when its kinetic momentum p_+=k_+ - e A_-(x_+) vanishes, at which point operators from the surface at x_- =-\infty play a crucial role. Our formalism permits a more explicit and complete derivation of the rate of particle production than is usually given. We show that the system can be understood as the infinite boost limit of the analogous problem of an electric field which is homogeneous on surfaces of constant x^0.Comment: 37 pages, 2 figures, LaTeX 2 epsilo
    corecore