22,572 research outputs found

    Calculation of exciton densities in SMMC

    Get PDF
    We develop a shell-model Monte Carlo (SMMC) method to calculate densities of states with varying exciton (particle-hole) number. We then apply this method to the doubly closed-shell nucleus 40Ca in a full 0s-1d-0f-1p shell-model space and compare our results to those found using approximate analytic expressions for the partial densities. We find that the effective one-body level density is reduced by approximately 22% when a residual two-body interaction is included in the shell model calculation.Comment: 10 pages, 4 figure

    Shell Model Monte Carlo Methods

    Get PDF
    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo (SMMC) methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of {\it pf}-shell nuclei, the thermal and rotational behavior of rare-earth and γ\gamma-soft nuclei, and the calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed

    Solution of large scale nuclear structure problems by wave function factorization

    Full text link
    Low-lying shell model states may be approximated accurately by a sum over products of proton and neutron states. The optimal factors are determined by a variational principle and result from the solution of rather low-dimensional eigenvalue problems. Application of this method to sd-shell nuclei, pf-shell nuclei, and to no-core shell model problems shows that very accurate approximations to the exact solutions may be obtained. Their energies, quantum numbers and overlaps with exact eigenstates converge exponentially fast as the number of retained factors is increased.Comment: 12 pages, 12 figures (from 15 eps files) include

    Dynamical transition for a particle in a squared Gaussian potential

    Full text link
    We study the problem of a Brownian particle diffusing in finite dimensions in a potential given by ψ=ϕ2/2\psi= \phi^2/2 where ϕ\phi is Gaussian random field. Exact results for the diffusion constant in the high temperature phase are given in one and two dimensions and it is shown to vanish in a power-law fashion at the dynamical transition temperature. Our results are confronted with numerical simulations where the Gaussian field is constructed, in a standard way, as a sum over random Fourier modes. We show that when the number of Fourier modes is finite the low temperature diffusion constant becomes non-zero and has an Arrhenius form. Thus we have a simple model with a fully understood finite size scaling theory for the dynamical transition. In addition we analyse the nature of the anomalous diffusion in the low temperature regime and show that the anomalous exponent agrees with that predicted by a trap model.Comment: 18 pages, 4 figures .eps, JPA styl

    Renormalization of Drift and Diffusivity in Random Gradient Flows

    Full text link
    We investigate the relationship between the effective diffusivity and effective drift of a particle moving in a random medium. The velocity of the particle combines a white noise diffusion process with a local drift term that depends linearly on the gradient of a gaussian random field with homogeneous statistics. The theoretical analysis is confirmed by numerical simulation. For the purely isotropic case the simulation, which measures the effective drift directly in a constant gradient background field, confirms the result previously obtained theoretically, that the effective diffusivity and effective drift are renormalized by the same factor from their local values. For this isotropic case we provide an intuitive explanation, based on a {\it spatial} average of local drift, for the renormalization of the effective drift parameter relative to its local value. We also investigate situations in which the isotropy is broken by the tensorial relationship of the local drift to the gradient of the random field. We find that the numerical simulation confirms a relatively simple renormalization group calculation for the effective diffusivity and drift tensors.Comment: Latex 16 pages, 5 figures ep

    Space, the new frontier

    Get PDF
    Space program - high thrust boosters with greater payload capabilities, superior guidance and control, and astronaut trainin

    Results from Shell Model Monte Carlo Studies

    Get PDF
    We review results obtained using Shell Model Monte Carlo (SMMC) techniques. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; the resultant path integral is evaluated stochastically. After a brief review of the methods, we discuss a variety of nuclear physics applications. These include studies of the ground-state properties of pf-shell nuclei, Gamow-Teller strength distributions, thermal and rotational pairing properties of nuclei near N=Z, γ\gamma-soft nuclei, and ββ\beta\beta-decay in ^{76}Ge. Several other illustrative calculations are also reviewed. Finally, we discuss prospects for further progress in SMMC and related calculations

    Water balance complexities in ephemeral catchments with different land uses: Insights from monitoring and distributed hydrologic modeling

    Get PDF
    Although ephemeral catchments are widespread in arid and semiarid climates, the relationship of their water balance with climate, geology, topography, and land cover is poorly known. Here we use 4 years (2011–2014) of rainfall, streamflow, and groundwater level measurements to estimate the water balance components in two adjacent ephemeral catchments in south-eastern Australia, with one catchment planted with young eucalypts and the other dedicated to grazing pasture. To corroborate the interpretation of the observations, the physically based hydrological model CATHY was calibrated and validated against the data in the two catchments. The estimated water balances showed that despite a significant decline in groundwater level and greater evapotranspiration in the eucalypt catchment (104–119% of rainfall) compared with the pasture catchment (95–104% of rainfall), streamflow consistently accounted for 1–4% of rainfall in both catchments for the entire study period. Streamflow in the two catchments was mostly driven by the rainfall regime, particularly rainfall frequency (i.e., the number of rain days per year), while the downslope orientation of the plantation furrows also promoted runoff. With minimum calibration, the model was able to adequately reproduce the periods of flow in both catchments in all years. Although streamflow and groundwater levels were better reproduced in the pasture than in the plantation, model-computed water balance terms confirmed the estimates from the observations in both catchments. Overall, the interplay of climate, topography, and geology seems to overshadow the effect of land use in the study catchments, indicating that the management of ephemeral catchments remains highly challenging

    Clinical manifestations of human brucellosis : a systematic review and meta-analysis

    Get PDF
    BACKGROUND: The objectives of this systematic review, commissioned by WHO, were to assess the frequency and severity of clinical manifestations of human brucellosis, in view of specifying a disability weight for a DALY calculation. METHODS/PRINCIPAL FINDINGS: Thirty three databases were searched, with 2,385 articles published between January 1990-June 2010 identified as relating to human brucellosis. Fifty-seven studies were of sufficient quality for data extraction. Pooled proportions of cases with specific clinical manifestations were stratified by age category and sex and analysed using generalized linear mixed models. Data relating to duration of illness and risk factors were also extracted. Severe complications of brucellosis infection were not rare, with 1 case of endocarditis and 4 neurological cases per 100 patients. One in 10 men suffered from epididymo-orchitis. Debilitating conditions such as arthralgia, myalgia and back pain affected around half of the patients (65%, 47% and 45%, respectively). Given that 78% patients had fever, brucellosis poses a diagnostic challenge in malaria-endemic areas. Significant delays in appropriate diagnosis and treatment were the result of health service inadequacies and socioeconomic factors. Based on disability weights from the 2004 Global Burden of Disease Study, a disability weight of 0.150 is proposed as the first informed estimate for chronic, localised brucellosis and 0.190 for acute brucellosis. CONCLUSIONS: This systematic review adds to the understanding of the global burden of brucellosis, one of the most common zoonoses worldwide. The severe, debilitating, and chronic impact of brucellosis is highlighted. Well designed epidemiological studies from regions lacking in data would allow a more complete understanding of the clinical manifestations of disease and exposure risks, and provide further evidence for policy-makers. As this is the first informed estimate of a disability weight for brucellosis, there need for further debate amongst brucellosis experts and a consensus to be reache
    corecore