83,308 research outputs found

    Dynamic delamination crack propagation in a graphite/epoxy laminate

    Get PDF
    Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of ∼0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is ∼0.4\sim 0.4 μ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure

    Formation and Acceleration of Uniformly-Filled Ellipsoidal Electron Bunches Obtained via Space-Charge-Driven Expansion from a Cesium-Telluride Photocathode

    Full text link
    We report the experimental generation, acceleration and characterization of a uniformly-filled electron bunch obtained via space-charge-driven expansion (often referred to as "blow-out regime") in an L-band (1.3-GHz) radiofrequency photoinjector. The beam is photoemitted from a Cesium-Telluride semiconductor photocathode using a short (<200<200 fs) ultraviolet laser pulse. The produced electron bunches are characterized with conventional diagnostics and the signatures of their ellipsoidal character is observed. We especially demonstrate the production of ellipsoidal bunches with charges up to ∼0.5\sim0.5 nC corresponding to a ∼20\sim20-fold increase compared to previous experiments with metallic photocathodes.Comment: 9, pages, 13 figure

    The angular spin current and its physical consequences

    Full text link
    We find that in order to completely describe the spin transport, apart from spin current (or linear spin current), one has to introduce the angular spin current. The two spin currents respectively describe the translational and rotational motion of a spin. The definitions of these spin current densities are given and their physical properties are discussed. Both spin current densities appear naturally in the spin continuity equation. Moreover we predict that the angular spin current can also induce an electric field E⃗\vec{E}, and in particular E⃗\vec{E} scales as 1/r21/r^2 at large distance rr, whereas the E⃗\vec{E} field generated from the linear spin current goes as 1/r31/r^3.Comment: 7 pages, 2 figure

    Decoherence-Based Quantum Zeno Effect in a Cavity-QED System

    Full text link
    We present a decoherence-based interpretation for the quantum Zeno effect (QZE) where measurements are dynamically treated as dispersive couplings of the measured system to the apparatus, rather than the von Neumann's projections. It is found that the explicit dependence of the survival probability on the decoherence time quantitatively distinguishes this dynamic QZE from the usual one based on projection measurements. By revisiting the cavity-QED experiment of the QZE [J. Bernu, et al., Phys. Rev. Lett, 101, 180402 (2008)], we suggest an alternative scheme to verify our theoretical consideration that frequent measurements slow down the increase of photon number inside a microcavity due to the nondemolition couplings with the atoms in large detuning.Comment: 4 pages, 3 figure

    Quantum decoherence of excitons in a leaky cavity with quasimode

    Get PDF
    For the excitons in the quantum well placed within a leaky cavity, the quantum decoherence of a mesoscopically superposed states is investigated based on the factorization theory for quantum dissipation. It is found that the coherence of the exciton superposition states will decrease in an oscillating form when the cavity field interacting with the exciton is of the form of quasimode. The effect of the thermal cavity fields on the quantum decoherence of the superposition states of the exciton is studied and it is observed that the higher the temperature of the environment is, the shorter the decoherence characteristic time is.Comment: 1 figure, 7 page

    Ultrafast Raman laser mode-locked by nanotubes

    Get PDF
    We demonstrate passive mode-locking of a Raman fiber laser using a nanotube-based saturable absorber coupled to a net normal dispersion cavity. This generates highly chirped 500 ps pulses. These are then compressed down to 2 ps , with 1.4 kW peak power, making it a simple wavelength-versatile source for various applications

    An quantum approach of measurement based on the Zurek's triple model

    Full text link
    In a close form without referring the time-dependent Hamiltonian to the total system, a consistent approach for quantum measurement is proposed based on Zurek's triple model of quantum decoherence [W.Zurek, Phys. Rev. D 24, 1516 (1981)]. An exactly-solvable model based on the intracavity system is dealt with in details to demonstrate the central idea in our approach: by peeling off one collective variable of the measuring apparatus from its many degrees of freedom, as the pointer of the apparatus, the collective variable de-couples with the internal environment formed by the effective internal variables, but still interacts with the measured system to form a triple entanglement among the measured system, the pointer and the internal environment. As another mechanism to cause decoherence, the uncertainty of relative phase and its many-particle amplification can be summed up to an ideal entanglement or an Shmidt decomposition with respect to the preferred basis.Comment: 22pages,3figure
    • …
    corecore