9,272 research outputs found

    Disk wind feedback from high-mass protostars

    Full text link
    We perform a sequence of 3D magnetohydrodynamic (MHD) simulations of the outflow-core interaction for a massive protostar forming via collapse of an initial cloud core of 60 M60~{M_\odot}. This allows us to characterize the properties of disk wind driven outflows from massive protostars, which can allow testing of different massive star formation theories. It also enables us to assess quantitatively the impact of outflow feedback on protostellar core morphology and overall star formation efficiency. We find that the opening angle of the flow increases with increasing protostellar mass, in agreement with a simple semi-analytic model. Once the protostar reaches 24 M\sim24~{M_\odot} the outflow's opening angle is so wide that it has blown away most of the envelope, thereby nearly ending its own accretion. We thus find an overall star formation efficiency of 50%\sim50\%, similar to that expected from low-mass protostellar cores. Our simulation results therefore indicate that the MHD disk wind outflow is the dominant feedback mechanism for helping to shape the stellar initial mass function from a given prestellar core mass function.Comment: Accepted for publication in Ap

    Outflow-Confined HII regions. II. The Early Break-Out Phase

    Full text link
    In this series of papers, we model the formation and evolution of the photoionized region and its observational signatures during massive star formation. Here we focus on the early break out of the photoionized region into the outflow cavity. Using results of 3-D magnetohydrodynamic-outflow simulations and protostellar evolution calculations, we perform post-processing radiative-transfer. The photoionized region first appears at a protostellar mass of 10Msun in our fiducial model, and is confined to within 10-100AU by the dense inner outflow, similar to some observed very small hypercompact HII regions. Since the ionizing luminosity of the massive protostar increases dramatically as Kelvin-Helmholz (KH) contraction proceeds, the photoionized region breaks out to the entire outflow region in <10,000yr. Accordingly, the radio free-free emission brightens significantly in this stage. In our fiducial model, the radio luminosity at 10 GHz changes from 0.1 mJy kpc2 at m=11Msun to 100 mJy kpc2 at 16Msun, while the infrared luminosity increases by less than a factor of two. The radio spectral index also changes in the break-out phase from the optically thick value of 2 to the partially optically thin value of 0.6. Additionally, we demonstrate that short-timescale variation in free-free flux would be induced by an accretion burst. The outflow density is enhanced in the accretion burst phase, which leads to a smaller ionized region and weaker free-free emission. The radio luminosity may decrease by one order of magnitude during such bursts, while the infrared luminosity is much less affected, since internal protostellar luminosity dominates over accretion luminosity after KH contraction starts. Such variability may be observable on timescales as short 10-100 yr, if accretion bursts are driven by disk instabilities.Comment: 9 pages, 5 figures, accepted for publication in Ap

    The Impact of Feedback in Massive Star Formation. II. Lower Star Formation Efficiency at Lower Metallicity

    Get PDF
    We conduct a theoretical study of the formation of massive stars over a wide range of metallicities from 1e-5 to 1Zsun and evaluate the star formation efficiencies (SFEs) from prestellar cloud cores taking into account multiple feedback processes. Unlike for simple spherical accretion, in the case of disk accretion feedback processes do not set upper limits on stellar masses. At solar metallicity, launching of magneto-centrifugally-driven outflows is the dominant feedback process to set SFEs, while radiation pressure, which has been regarded to be pivotal, has only minor contribution even in the formation of over-100Msun stars. Photoevaporation becomes significant in over-20Msun star formation at low metallicities of <1e-2Zsun, where dust absorption of ionizing photons is inefficient. We conclude that if initial prestellar core properties are similar, then massive stars are rarer in extremely metal-poor environments of 1e-5 - 1e-3Zsun. Our results give new insight into the high-mass end of the initial mass function and its potential variation with galactic and cosmological environments.Comment: 13 pages, 9 figures, accepted for publication in The Astrophysical Journa

    GMC Collisions as Triggers of Star Formation. V. Observational Signatures

    Full text link
    We present calculations of molecular, atomic and ionic line emission from simulations of giant molecular cloud (GMC) collisions. We post-process snapshots of the magneto-hydrodynamical simulations presented in an earlier paper in this series by Wu et al. (2017) of colliding and non-colliding GMCs. Using photodissociation region (PDR) chemistry and radiative transfer we calculate the level populations and emission properties of 12^{12}CO J=10J=1-0, [CI] 3P13P0^3{\rm P}_1\rightarrow{^3{\rm P}}_0 at 609μ609\,\mum, [CII] 158μ158\,\mum and [OI] 3P13P0^3{\rm P}_1\rightarrow{^3{\rm P}}_0 transition at 63μ63\,\mum. From integrated intensity emission maps and position-velocity diagrams, we find that fine-structure lines, particularly the [CII] 158μ158\,\mum, can be used as a diagnostic tracer for cloud-cloud collision activity. These results hold even in more evolved systems in which the collision signature in molecular lines has been diminished.Comment: 10 pages, 7 figures, accepted for publication in ApJ, comments welcom

    An electrical probe of the phonon mean-free path spectrum

    Full text link
    Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MFPAF that relies on photo-lithographically defined heater-thermometer separation to set the length scale. An important advantage of the proposed technique is its insensitivity to the thermal interfacial impedance and its compatibility with a large array of temperature-controlled chambers that lack optical ports. Detailed analysis of the experimental data based on the enhanced Fourier law (EFL) demonstrates that heat-carrying phonons in gallium arsenide have a much wider mean-free path spectrum than originally thought

    Draft Genome Sequence of Kocuria sp. Strain UCD-OTCP (Phylum Actinobacteria).

    Get PDF
    Here, we present the draft genome of Kocuria sp. strain UCD-OTCP, a member of the phylum Actinobacteria, isolated from a restaurant chair cushion. The assembly contains 3,791,485 bp (G+C content of 73%) and is contained in 68 scaffolds

    Beyond the T Dwarfs: Theoretical Spectra, Colors, and Detectability of the Coolest Brown Dwarfs

    Full text link
    We explore the spectral and atmospheric properties of brown dwarfs cooler than the latest known T dwarfs. Our focus is on the yet-to-be-discovered free-floating brown dwarfs in the \teff range from \sim800 K to \sim130 K and with masses from 25 to 1 \mj. This study is in anticipation of the new characterization capabilities enabled by the launch of SIRTF and the eventual launch of JWST. We provide spectra from \sim0.4 \mic to 30 \mic, highlight the evolution and mass dependence of the dominant H2_2O, CH4_4, and NH3_3 molecular bands, consider the formation and effects of water-ice clouds, and compare our theoretical flux densities with the sensitivities of the instruments on board SIRTF and JWST. The latter can be used to determine the detection ranges from space of cool brown dwarfs. In the process, we determine the reversal point of the blueward trend in the near-infrared colors with decreasing \teff, the \teffs at which water and ammonia clouds appear, the strengths of gas-phase ammonia and methane bands, the masses and ages of the objects for which the neutral alkali metal lines are muted, and the increasing role as \teff decreases of the mid-infrared fluxes longward of 4 \mic. These changes suggest physical reasons to expect the emergence of at least one new stellar class beyond the T dwarfs. Our spectral models populate, with cooler brown dwarfs having progressively more planet-like features, the theoretical gap between the known T dwarfs and the known giant planets. Such objects likely inhabit the galaxy, but their numbers are as yet unknown.Comment: Includes 14 figures, most in color; accepted to the Astrophysical Journa
    corecore