23,301 research outputs found

    Fermionic spin excitations in two and three-dimensional antiferromagnets

    Get PDF
    Spin excitations in an ordered Heisenberg magnet are magnons--bosons with spin 1. That may change when frustration and quantum fluctuations suppress the order and restore the spin-rotation symmetry. We show that spin excitations in the S=1/2S=1/2 Heisenberg antiferromagnet on kagome are spinons--fermions with spin 1/2. In the ground state the system can be described as a collection of small, heavy pairs of spinons with spin 0. A magnetic excitation of lowest energy amounts to breaking up a pair into two spinons at a cost of 0.06J0.06 J.Comment: 4 pages, 4 figures, accepted version of the manuscrip

    Attacks on the Search-RLWE problem with small errors

    Get PDF
    The Ring Learning-With-Errors (RLWE) problem shows great promise for post-quantum cryptography and homomorphic encryption. We describe a new attack on the non-dual search RLWE problem with small error widths, using ring homomorphisms to finite fields and the chi-squared statistical test. In particular, we identify a "subfield vulnerability" (Section 5.2) and give a new attack which finds this vulnerability by mapping to a finite field extension and detecting non-uniformity with respect to the number of elements in the subfield. We use this attack to give examples of vulnerable RLWE instances in Galois number fields. We also extend the well-known search-to-decision reduction result to Galois fields with any unramified prime modulus q, regardless of the residue degree f of q, and we use this in our attacks. The time complexity of our attack is O(nq2f), where n is the degree of K and f is the residue degree of q in K. We also show an attack on the non-dual (resp. dual) RLWE problem with narrow error distributions in prime cyclotomic rings when the modulus is a ramified prime (resp. any integer). We demonstrate the attacks in practice by finding many vulnerable instances and successfully attacking them. We include the code for all attacks

    Quantum spin models for the SU(n)_1 Wess-Zumino-Witten model

    Full text link
    We propose 1D and 2D lattice wave functions constructed from the SU(n)_1 Wess-Zumino-Witten (WZW) model and derive their parent Hamiltonians. When all spins in the lattice transform under SU(n) fundamental representations, we obtain a two-body Hamiltonian in 1D, including the SU(n) Haldane-Shastry model as a special case. In 2D, we show that the wave function converges to a class of Halperin's multilayer fractional quantum Hall states and belongs to chiral spin liquids. Our result reveals a hidden SU(n) symmetry for this class of Halperin states. When the spins sit on bipartite lattices with alternating fundamental and conjugate representations, we provide numerical evidence that the state in 1D exhibits quantum criticality deviating from the expected behaviors of the SU(n)_1 WZW model, while in 2D they are chiral spin liquids being consistent with the prediction of the SU(n)_1 WZW model.Comment: 28 pages, 9 figures, published versio
    • …
    corecore