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Spin excitations in an ordered Heisenberg magnet are magnons—bosons with spin 1. That may change

when frustration and quantum fluctuations suppress the order and restore the spin-rotation symmetry. We

show that spin excitations in the S ¼ 1=2 Heisenberg antiferromagnet on a kagome lattice are spinons—

fermions with spin 1=2. In the ground state the system can be described as a collection of small, heavy

pairs of spinons with spin 0. A magnetic excitation of lowest energy amounts to breaking up a pair into

two spinons at a cost of 0.06 J.
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The Heisenberg antiferromagnet, described by the ex-
change Hamiltonian

H ¼ J
X

hiji
Si � Sj; (1)

where J > 0 is the exchange coupling and hiji denotes a
pair of neighboring sites, is a simple model with realistic
prototypes. A bipartite antiferromagnet in three dimen-
sions exhibits long-range spin order that breaks the global
spin SU(2) symmetry. Low-energy excitations of such a
magnet are spin waves, whose quantization yields mag-
nons—bosons with spin 1 [1]. In one dimension, spin order
is disrupted by quantum fluctuations and the SU(2) sym-
metry is restored. For spins of length S ¼ 1=2, the excita-
tions are spinons—quasiparticles with spin 1=2 [2]. A
long-standing question is the existence of similarly unusual
excitations in higher-dimensional magnets where the sym-
metry of the ground state is restored by a combination of
strong quantum fluctuations (small S) and geometrical
frustration (a nonbipartite lattice). In 1973, Anderson pro-
posed a resonating valence-bond state for spins 1=2 on the
triangular lattice [3]. In this state, spins form singlet bonds,
or quantum dimers [4], with their neighbors. Although the
ground state on the triangular lattice turned out to be
ordered, kagome and hyperkagome lattices have emerged
as likely candidates for exotic quantum physics [5].

The exchange energy (1) on a kagome lattice [Fig. 1(a)]
is minimized when the total spin of every triangle attains
its lowest allowed value [6]. For S ¼ 1=2, that can be
achieved by putting two spins of a triangle in a singlet
state; the third spin is free to form a singlet on the adjacent
triangle. If a dimer could be placed on every triangle, we
would construct a ground state with frozen singlets, a
valence-bond solid. That does not work: one in four tri-
angles on a kagome lattice lack a dimer. Quantum fluctua-
tions induced by defect triangles make the ground state a
nontrivial superposition of valence-bond states. Some re-
cent theoretical works [7,8] lend support to a valence-bond
crystal proposed by Marston and Zeng [9], while others are
consistent with a valence-bond liquid [10]. Exact diago-

nalization studies [11] reveal a large number of low-lying
singlet states, presumably associated with different dimer
configurations. Spin-1 excitations appear to have an energy
gap of 0.05 to 0.10 J [10–12].
We propose a simple physical picture of the S ¼ 1=2

kagome antiferromagnet, in which the system is viewed as
an ensemble of spinons, fermions with spin 1=2. The
antisymmetry of the many-body wave function can be
traced to quantum interference. As two spinons are ex-
changed, they drag around pairs of spins entangled in S ¼
0 states. In the end, the background singlet pairs return to
the same positions. However, an odd number of them
reverse their orientation, thus altering the sign of the
many-body wave function.
The defect triangles turn out to be small, heavy pairs of

spinons bound by exchange-mediated attraction. The bind-
ing energy is Eb ¼ 0:06 J. Spin-0 excitations are associ-
ated with the motion of pairs; their heavy mass is reflected
in the large density of singlet states at low energies. Spin-1
excitations correspond to breaking up a bound pair into
(nearly) free spinons with parallel spins. Because spinon
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FIG. 1 (color online). (a) Kagome lattice and the major play-
ers: quantum dimers (thick bonds), a defect triangle containing
no dimer (red), and an antikink spinon (blue arrow). (b) The
mapping to a compact U(1) gauge theory on a honeycomb
lattice. Electric flux on links has strength �1 and is depicted
as arrows in the manner of Elser and Zeng [15,25]. The inset
shows the U(1) charges of the lattice sites and quasiparticles.
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pairs retain their individual character on kagome, the spin
gap is determined primarily by their binding energy, � �
Eb ¼ 0:06 J. This number is in line with the previous
estimates of the spin gap [10–12].

This picture is based on a study of two toy models on
lattices that share with kagome the triangular motif: the �
chain [13,14] and the Husimi cactus, a treelike variant of
kagome [15,16]. Both systems have dimerized ground
states with exactly one singlet bond on every triangle.
The � chain provides information about the properties of
individual spinons, while the Husimi cactus sheds light on
their quantum statistics and interactions.

The � chain has two ground states, one with singlets on
the left bonds of the triangles (L), the other with singlets on
the right bonds (R), Figs. 2(a) and 2(b). A local spin-1
excitation decays into two spinons—quasiparticles with
spin 1=2, Figs. 2(c)–2(e). They serve as domain walls
and come in two flavors [13]: kinks interpolate between
state L on the left and state R on the right, antikinks do the
opposite. A kink is fully localized and has zero energy cost:
every triangle in its vicinity has a total spin 1=2 and is thus
in a state of lowest energy, which is of course a stationary
state. One might think that zero excitation energy would
lead to a proliferation of kinks, but that does not happen:
kinks can only be created in pairs with antikinks, whose
excitation energy is positive. That hints at the existence of
a conserved charge, which will be defined later.

Antikinks are mobile; their dynamics is described ap-
proximately as hopping to the nearest triangle [13]:

Hjni ¼ 5J

4
jni � J

2
jn� 1i � J

2
jnþ 1i þ . . . (2)

where n is the triangle containing the antikink. A Fourier

transform yields the quasiparticle dispersion �ðkÞ ¼
5J=4� J cosk � J=4þ k2=ð2mÞ in the limit of low lattice
momenta; the antikink mass m ¼ 1=J. A local spin-1
excitation results in the creation of a kink and an antikink
with a minimum energy of J=4. Terms omitted in Eq. (2)
create additional excitations by promoting the two singlets
adjacent to the antikink to triplets; alternatively, they can
be viewed as the creation of an extra kink-antikink pair
next to the antikink. These virtual excitations renormalize
the antikink mass to m � 1:16=J and lower the bottom of
the antikink band to � ¼ 0:219 J [17] in agreement with
exact diagonalization [18]. Such perturbations appear to be
harmless and will be ignored.
We note that the sign of the hopping terms in Eq. (2)

depends on the sign convention for quantum dimers [19]:
the S ¼ 0 state of two spins is antisymmetric under ex-

change: jði; jÞi � ðj "i#ji � j #i"jiÞ=
ffiffiffi
2

p ¼ �jðj; iÞi. When

necessary, we will depict a dimer state jði; jÞi as an arrow
pointing from i to j. The reversal of the arrow amounts to
multiplying the state wave function by �1. A negative
hopping amplitude is enforced by the pivoting rule: when
an antikink hops from one triangle to another, a quantum
dimer moves in the opposite direction by pivoting on the
site shared by the triangles, Figs. 2(d) and 2(e).
A ground state of the cactus has a quantum dimer on

every triangle [16]. Like on the � chain, a local spin-1
excitation decays into a localized kink and a mobile anti-
kink propagating along a one-dimensional path (Fig. 3).
The kink has energy 0, while the antikink propagates along
the allowed path with a minimum energy of J=4 and a mass
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FIG. 2 (color online). Ground states L (a) and R (b) of the �
chain. A local triplet excitation (c) decays into a localized kink
and a mobile antikink (d)–(e). Arrows on the dimers illustrate the
pivoting rule (see text).
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FIG. 3 (color online). A dimerized state on the Husimi cactus.
A local triplet excitation (a) decays into a localized kink and a
mobile antikink (b)–(d). Displaced valence bonds are shown in
blue color. Shaded triangles in (d) mark the allowed path of the
antikink.
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m ¼ 1=J. (Again, we neglect virtual excitations in the
vicinity of the antikink.)

Next we examine a single defect triangle on the cactus,
Fig. 4(a). The Hamiltonian connects this state to a state
with a singlet bond of a longer range [15], Fig. 4(b). The
longer-range bond can be viewed as two antikinks with
total spin 0. By jumping to a neighboring triangle, the
antikinks are able to propagate along three branches of
the cactus meeting at the original defect triangle, Fig. 4(d).
Thus a defect triangle is ‘‘made’’ from two antikinks
with total spin 0. A state of two antikinks with a total
spin 1 is also of interest to us, so we will consider a generic
case of two antikinks with some specified spin projections,
Fig. 4(c).

The Husimi cactus is a toy model in which spinons have
just enough freedom to exchange their locations by hop-
ping along the three branches. That allows us to determine
their quantum statistics by examining the resulting Berry
phase acquired by the spinons. The two-spinon wave func-
tion turns out to be antisymmetric under exchange, so
antikinks are fermions.

We first sketch an informal argument along the lines
of Arovas et al. [20]. Starting with the state depicted in
Fig. 4(c), we perform an adiabatic exchange of the two
antikinks using the pivoting rule. We arrive at the state
shown in Fig. 4(d) with dimers in the same positions but
with one dimer reversed. If we use the same dimer basis to
describe both states, the exchanged state acquires an extra
factor of �1. The extra factor appears for any initial
positions of the antikinks.

The informal argument is supported by an explicit de-
termination of the ground state of two antikinks on the
cactus [17]. We find a nondegenerate, symmetric spatial
wave function for total spin S ¼ 0 and a doubly degener-
ate, antisymmetric spatial wave function for S ¼ 1, as one
expects for two fermions. The ground state in the S ¼ 1
sector has energy J=2, twice the minimum energy of a free
antikink. In contrast, two antikinks with S ¼ 0 form a
bound state whose energy lies 0.06 J below the bottom of
the two-spinon continuum. The bound state has a small
size � � 2:8 lattice units of the � chain.
Curiously, antikinks in the S ¼ 0 ground state are bound

not only to each other, but also to the original defect
triangle: a pair is localized. The localization is topological
in origin: like on the � chain, two antikinks cannot move
through the same branch of the cactus: an antikink may
only be followed by a kink.
Let us discuss implications for the Heisenberg model on

kagome. The cactus can be viewed as a tree made of
triangles. Extrapolating results from a tree to a periodic
lattice (even with the same coordination number) is only
warranted for those physical quantities that are not sensi-
tive to the long-distance properties of the lattice. For
example, the band structure of a tree is quite different
from that of a periodic lattice. Fortunately, the small size
of a spinon pair means that its internal structure is deter-
mined by the local geometry of the lattice, so that the pair
binding energy is expected to be roughly the same on the
cactus, kagome, and hyperkagome.
On both the kagome and hyperkagome lattice one in four

triangles carries a spinon pair. We are now facing a many-
body problem of fermionic spinons with a concentration of
1=3 per site. The existence of spinons with Fermi-Dirac
statistics in this and other frustrated two-dimensional mag-
nets was conjectured previously [9,21,22] on the basis of a
large-N generalization of the Heisenberg model [23]. In
these theories, spinons interact with an emergent lattice
compact U(1) gauge field [24]. We exploited an arrow
representation of dimer coverings on kagome [15,25] to
define a fictitious U(1) gauge field living on links of a
honeycomb lattice, Fig. 1(b). The arrows depict a quan-
tized electric field of unit strength. Medial sites carry
background charge Q ¼ �1, which is neutralized on av-
erage by the charges of antikinks,Q ¼ þ2, and their pairs,
Q ¼ þ4; kinks have charge Q ¼ �2. It is noteworthy that
kinks and antikinks are indeed expected to carry a small
real electric charge [26].
The gauge-theory connection sheds light on the origin of

one-dimensional trajectories of spinons on kagome. An
object of charge Q passing through a link increments the
electric flux in it by Q, so antikinks can only move in the
direction of electric flux, Fig. 1(b). As a result, spinons are
constrained to move along one-dimensional paths that may
be infinite (as on the Husimi cactus) or may terminate in a
loop. A finite length of an antikink trail R would raise the

)b()a(
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FIG. 4 (color online). A state with a single defect triangle (a)
evolves into a state with one longer-range bond (b), which can be
viewed as two antikinks, shown as open and closed blue dots (c),
with a total spin 0. State (d) is obtained from state (c) by an
adiabatic exchange of the antikinks. Shaded triangles mark
allowed paths of the antikinks.
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triplet excitation energy of a pair by Ec � �2J=2R2 [17].
Since R depends on the arrangement of dimers and may
even vary from one spinon pair to the next, we only give an
upper bound for the confinement energy. On kagome, R �
10 so that Ec � 0:05 J. Thus the spin gap � ¼ Eb þ Ec

may vary from 0.06 J to as much as 0.11 J, depending on
the valence-bond pattern in the ground state.

Localization of antikink pairs can be traced to their
interaction with the gauge field, whose electric flux is
constrained to take on values �1. Two antikinks traveling
along the same line would leave behind links with an
unphysical electric flux �3. Therefore, in order to move,
the fermions making a pair must follow different paths.
The tunneling amplitude is suppressed by a factor of order

e�L=�, where � � 2:8 is the pair size and L is the length of
the shortest loop on the medial lattice: L ¼ 6 for kagome,
10 for hyperkagome, and 1 for the Husimi cactus. (The

smallness of e�L=� also makes it possible to treat heavy
spinon pairs as stationary objects on time scales relevant to
the motion of light spinons.) Singh and Huse [8] found that
the presence of other pairs increases the amplitude of pair
tunneling. Thus pairs form small localized clusters reso-
nating around hexagons and preserving valence-bond order
elsewhere.

While our work agrees with the large-N approaches
[9,21–23] on the big picture of fermionic spinons inter-
acting with a U(1) gauge field, there are important differ-
ences. First, the spinons are not free: exchange-mediated
attraction binds them into small bosonic pairs. Second, the
U(1) gauge field manifests itself as a quantized electric
field, rather than a background magnetic flux, and frus-
trates the motion of spinon pairs. The motion of spinons,
which tends to scramble valence-bond order, is strongly
suppressed as a result. These observations lend support to
the picture of a valence-bond crystal proposed by Marston
and Zeng [7–9].

Aside from inelastic neutron scattering, another way to
break spinon pairs is to apply a magnetic field strong
enough to fully polarize antikink spins, so that the magne-
tization reaches 1=3 of the maximum value. The liberated
fermions will move at high speeds, inducing strong fluctu-
ations of the electric field and restoring translational in-
variance. A mean-field theory of spinons moving in the
background of the emergent magnetic flux may be a good
starting point for this partially polarized spin liquid. That
would be interesting in light of recent numerical evidence

for an incompressible quantum spin liquid at 1=3 of full
magnetization [27,28].
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