26,246 research outputs found

    Translucent molecular clouds: Theory and observations

    Get PDF
    Few suitable stars behind molecular clouds have been identified. A limited survey was performed of interstellar lines toward highly reddened stars in the southern sky, using the ESO 1.4 m CAT telescope with a Reticon detector, and the Cerro Tololo 4 m telescope equipped with a GEC charge coupled device (CCD) detector. Because of the reduced extinction at longer wavelengths, molecules were searched for with transitions in the red part of the spectrum such as C2 and CN. For some lines-of-sight for which C2 was detected, the 4300 A line of CH was also observed. Absorption lines of interstellar C2 around 8750 A were detected in the spectra of about 1/4 of the 36 observed stars. The inferred C2 column densities range between 10 to the 13th power and 10 to the 14th power sq. cm., and are up to an order of magnitude larger than those found for diffuse clouds. The observed column densities of CH correlate very well with those of C2 over this range. In contrast, the measured column densities of CN vary by orders of magnitude between the various regions, and they do not correlate with those of C2 and CH. The observed rotational population distribution of C2 also provides information about the physical conditions in the clouds. Models of translucent molecular clouds have been constructed along the lines described by van Dishoeck and Black (1986) for diffuse clouds. The models compute accurately the fractions of atomic and molecular hydrogen as functions of depth into the clouds, as well as the excitation of H2 by ultraviolet pumping. They also incorporate a detailed treatment of the photodissociation processes of the molecules (cf. van Dishoeck 1986), which play an important role in the chemistry up to depths of about 3 mag

    Sulphur molecules in the circumstellar envelopes of M-type AGB stars

    Full text link
    The sulphur compounds SO and SO2_2 have not been widely studied in the circumstellar envelopes of asymptotic giant branch (AGB) stars. By presenting and modelling a large number of SO and SO2_2 lines in the low mass-loss rate M-type AGB star R Dor, and modelling the available lines of those molecules in a further four M-type AGB stars, we aim to determine their circumstellar abundances and distributions. We use a detailed radiative transfer analysis based on the accelerated lambda iteration method to model circumstellar SO and SO2_2 line emission and molecular data files for both SO and SO2_2 that are more extensive than those previously available. Using 17 SO lines and 98 SO2 lines to constrain our models for R Dor, we find an SO abundance of 6.7x10−6^{-6} and an SO2_2 abundance of 5x10−6^{-6} with both species having high abundances close to the star. We also modelled 34^{34}SO and found an abundance of 3.1x10−7^{-7}, giving an 32^{32}SO/34^{34}SO ratio of 21.6. We derive similar results for the circumstellar SO and SO2_2 abundances and their distributions for the low mass-loss rate object W Hya. For these stars, the circumstellar SO and SO2_2 abundances are much higher than predicted by chemical models and these two species may account for all available sulphur. For the higher mass-loss rate stars, we find shell-like SO distributions with peak abundances that decrease and peak abundance radii that increase with increasing mass-loss rate. The positions of the peak SO abundance agree very well with the photodissociation radii of H2_2O. We find evidence that SO is most likely through the photodissociation of H2_2O and the subsequent reaction between S and OH. The S-bearing parent molecule appears not to be H2_2S. The SO2_2 models suggest an origin close to the star for this species, also disagreeing with current chemical models.Comment: 25 page

    Apparatus for measuring thermal conductivity Patent

    Get PDF
    Development of apparatus for measuring thermal conductivit

    An analytical method to predict efficiency of aircraft gearboxes

    Get PDF
    A spur gear efficiency prediction method previously developed by the authors was extended to include power loss of planetary gearsets. A friction coefficient model was developed for MIL-L-7808 oil based on disc machine data. This combined with the recent capability of predicting losses in spur gears of nonstandard proportions allows the calculation of power loss for complete aircraft gearboxes that utilize spur gears. The method was applied to the T56/501 turboprop gearbox and compared with measured test data. Bearing losses were calculated with large scale computer programs. Breakdowns of the gearbox losses point out areas for possible improvement

    Detection of Interstellar C_2 and C_3 in the Small Magellanic Cloud

    Get PDF
    We report the detection of absorption from interstellar C_2 and C_3 toward the moderately reddened star Sk 143, located in the near 'wing' region of the SMC, in optical spectra obtained with the ESO VLT/UVES. These detections of C_2 (rotational levels J=0-8) and C_3 (J=0-12) absorption in the SMC are the first beyond our Galaxy. The total abundances of C_2 and C_3 (relative to H_2) are similar to those found in diffuse Galactic molecular clouds -- as previously found for CH and CN -- despite the significantly lower average metallicity of the SMC. Analysis of the rotational excitation of C_2 yields an estimated kinetic temperature T_k ~ 25 K and a moderately high total hydrogen density n_H ~ 870 cm^-3 -- compared to the T_01 ~ 45 K and n_H ~ 85-300 cm^-3 obtained from H_2. The populations of the lower rotational levels of C_3 are consistent with an excitation temperature of about 34 K.Comment: accepted to MNRAS; 10 pages, 6 figure

    Models for application of radiation boundary condition for MHD waves in collapse calculations

    Get PDF
    The problem of reflection of magnetohydrodynamic (MHD) waves at the boundary of a numerical grid has to be resolved in order to obtain reliable results for the end state of the (isothermal) collapse of a rotating, magnetic protostellar cloud. Since the goal of investigating magnetic braking in collapse simulations is to see if the transport of angular momentum via alfven waves is large enough to solve the angular momentum problem an approximation that artificially suppresses large amplitudes in the MHD waves can be self-defeating. For this reason, four alternate methods of handling reflected waves where no assumptions are made regarding the amplitudes of the waves were investigated. In order to study this problem (of reflection) without interference from other effects these methods were tried on two simpler cases. The four methods are discussed

    Molecular clouds in the centers of galaxies: Constraints from HCN and CO-13 line emission

    Get PDF
    We have searched for HCN J=1-0 line emission in the centers of 12 galaxies and have detected it in 10 of them. We have obtained complementary data on J=1-0 and 2-1 transitions of CO-12 and CO-13 in these systems. The ratio of integrated intensities, I(CO 1-0)/I(HCN 1-0) = 25 +/- 11 for this sample. We find that HCN emission of this strength can be produced under conditions of subthermal excitation. In combination with the line ratios in CO and CO-13, HCN puts constraints on the mean conditions of molecular clouds and on the mix of cloud types within the projected beam

    National Transonic Facility: A review of the operational plan

    Get PDF
    The proposed National Transonic Facility (NTF) operational plan is reviewed. The NTF will provide an aerodynamic test capability significantly exceeding that of other transonic regime wind tunnels now available. A limited number of academic research program that might use the NTF are suggested. It is concluded that the NTF operational plan is useful for management, technical, instrumentation, and model building techniques available in the specialized field of aerodynamic analysis and simulation. It is also suggested that NASA hold an annual conference to discuss wind tunnel research results and to report on developments that will further improve the utilization and cost effectiveness of the NTF and other wind tunnels

    Portfolio Optimization and the Random Magnet Problem

    Full text link
    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movement of assets are are mutually correlated and therefore knowledge of cross--correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this ``random magnet problem'' are given by the cross-correlation matrix {\bf \sf C} of stock returns. We find that random matrix theory allows us to make an estimate for {\bf \sf C} which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.Comment: 12 pages, 4 figures, revte
    • …
    corecore