43 research outputs found

    abd-A Regulation by the iab-8 Noncoding RNA

    Get PDF
    The homeotic genes in Drosophila melanogaster are aligned on the chromosome in the order of the body segments that they affect. The genes affecting the more posterior segments repress the more anterior genes. This posterior dominance rule must be qualified in the case of abdominal-A (abd-A) repression by Abdominal-B (Abd-B). Animals lacking Abd-B show ectopic expression of abd-A in the epidermis of the eighth abdominal segment, but not in the central nervous system. Repression in these neuronal cells is accomplished by a 92 kb noncoding RNA. This “iab-8 RNA” produces a micro RNA to repress abd-A, but also has a second, redundant repression mechanism that acts only “in cis.” Transcriptional interference with the abd-A promoter is the most likely mechanism

    Attenuation of Skeletal Muscle and Renal Injury to the Lower Limb following Ischemia-Reperfusion Using mPTP Inhibitor NIM-811.

    Get PDF
    INTRODUCTION: Operation on the infrarenal aorta and large arteries of the lower extremities may cause rhabdomyolysis of the skeletal muscle, which in turn may induce remote kidney injury. NIM-811 (N-metyl-4-isoleucine-cyclosporine) is a mitochondria specific drug, which can prevent ischemic-reperfusion (IR) injury, by inhibiting mitochondrial permeability transition pores (mPTP). OBJECTIVES: Our aim was to reduce damages in the skeletal muscle and the kidney after IR of the lower limb with NIM-811. MATERIALS AND METHODS: Wistar rats underwent 180 minutes of bilateral lower limb ischemia and 240 minutes of reperfusion. Four animal groups were formed called Sham (receiving vehicle and sham surgery), NIM-Sham (receiving NIM-811 and sham surgery), IR (receiving vehicle and surgery), and NIM-IR (receiving NIM-811 and surgery). Serum, urine and histological samples were taken at the end of reperfusion. NADH-tetrazolium staining, muscle Wet/Dry (W/D) ratio calculations, laser Doppler-flowmetry (LDF) and mean arterial pressure (MAP) monitoring were performed. Renal peroxynitrite concentration, serum TNF-alpha and IL-6 levels were measured. RESULTS: Less significant histopathological changes were observable in the NIM-IR group as compared with the IR group. Serum K+ and necroenzyme levels were significantly lower in the NIM-IR group than in the IR group (LDH: p<0.001; CK: p<0.001; K+: p = 0.017). Muscle mitochondrial viability proved to be significantly higher (p = 0.001) and renal function parameters were significantly better (creatinine: p = 0.016; FENa: p<0.001) in the NIM-IR group in comparison to the IR group. Serum TNF-alpha and IL-6 levels were significantly lower (TNF-alpha: p = 0.003, IL-6: p = 0.040) as well as W/D ratio and peroxynitrite concentration were significantly lower (p = 0.014; p<0.001) in the NIM-IR group than in the IR group. CONCLUSION: NIM-811 could have the potential of reducing rhabdomyolysis and impairment of the kidney after lower limb IR injury

    Muscle Fiber Viability, a Novel Method for the Fast Detection of Ischemic Muscle Injury in Rats

    Get PDF
    Acute lower extremity ischemia is a limb- and life-threatening clinical problem. Rapid detection of the degree of injury is crucial, however at present there are no exact diagnostic tests available to achieve this purpose. Our goal was to examine a novel technique - which has the potential to accurately assess the degree of ischemic muscle injury within a short period of time - in a clinically relevant rodent model. Male Wistar rats were exposed to 4, 6, 8 and 9 hours of bilateral lower limb ischemia induced by the occlusion of the infrarenal aorta. Additional animals underwent 8 and 9 hours of ischemia followed by 2 hours of reperfusion to examine the effects of revascularization. Muscle samples were collected from the left anterior tibial muscle for viability assessment. The degree of muscle damage (muscle fiber viability) was assessed by morphometric evaluation of NADH-tetrazolium reductase reaction on frozen sections. Right hind limbs were perfusion-fixed with paraformaldehyde and glutaraldehyde for light and electron microscopic examinations. Muscle fiber viability decreased progressively over the time of ischemia, with significant differences found between the consecutive times. High correlation was detected between the length of ischemia and the values of muscle fiber viability. After reperfusion, viability showed significant reduction in the 8-hour-ischemia and 2-hour-reperfusion group compared to the 8-hour-ischemia-only group, and decreased further after 9 hours of ischemia and 2 hours of reperfusion. Light- and electron microscopic findings correlated strongly with the values of muscle fiber viability: lesser viability values represented higher degree of ultrastructural injury while similar viability results corresponded to similar morphological injury. Muscle fiber viability was capable of accurately determining the degree of muscle injury in our rat model. Our method might therefore be useful in clinical settings in the diagnostics of acute ischemic muscle injury

    In vitro evaluation of modified surface microhardness measurement, focus variation 3D microscopy and contact stylus profilometry to assess enamel surface loss after erosive-abrasive challenges

    Get PDF
    The aim of the study was to compare surface loss values after erosion-abrasion cycles obtained with modified surface microhardness measurement (mSMH), focus variation 3D microscopy (FVM) and contact stylus profilometry (CSP). We cut human molars into buccal and lingual halves, embedded them in resin and ground 200 μm of enamel away. The resulting surfaces were polished. To maintain a reference area, we applied Block-Out resin to partly cover the enamel surface. The samples were incubated in artificial saliva (37°C; 1 h), then rinsed in deionized water (10 s) and dried with oil-free air (5 s). We immersed the specimens individually in 30 mL citric acid (1%, pH 3.6) for 2 min (25°C, 70 rpm dynamic conditions) before brushing them (50 strokes, 200 g) in an automatic brushing machine with toothpaste-slurry. We calculated the surface loss as per mSMH, by re-measuring the length of the same six indentations made before the abrasive challenge. The experiment consisted of five experimental groups that received between 2 and 10 erosion-abrasion cycles. Each group contained 15 specimens and samples in groups 1, 2, 3, 4 and 5 underwent a total of 2, 4, 6, 8 and 10 cycles, respectively. The resin was removed from the reference area in one piece under 10× magnification and the FVM and CSP were performed. Agreement between the methods was calculated with the intraclass correlation coefficient (ICC) and depicted in Bland-Altman plots. All methods presented a linear pattern of surface loss measurements throughout the experiment, leading overall to a strong, statistically significant correlation between the methods (ICC = 0.85; p<0.001). So, despite the different surface loss values, all methods presented consistent results for surface loss measurement

    Initiator Elements Function to Determine the Activity State of BX-C Enhancers

    Get PDF
    A >300 kb cis-regulatory region is required for the proper expression of the three bithorax complex (BX-C) homeotic genes. Based on genetic and transgenic analysis, a model has been proposed in which the numerous BX-C cis-regulatory elements are spatially restricted through the activation or repression of parasegment-specific chromatin domains. Particular early embryonic enhancers, called initiators, have been proposed to control this complex process. Here, in order to better understand the process of domain activation, we have undertaken a systematic in situ dissection of the iab-6 cis-regulatory domain using a new method, called InSIRT. Using this method, we create and genetically characterize mutations affecting iab-6 function, including mutations specifically modifying the iab-6 initiator. Through our mutagenesis of the iab-6 initiator, we provide strong evidence that initiators function not to directly control homeotic gene expression but rather as domain control centers to determine the activity state of the enhancers and silencers within a cis-regulatory domain

    Chromosomal organization at the level of gene complexes

    Get PDF
    Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized

    Instant controllability for goursat problems

    No full text

    Instant controllability for goursat problems

    No full text
    corecore