54 research outputs found

    Towards the automation of product geometric verification: An overview

    Get PDF
    The paper aims at providing an overview on the current automation level of geometric verification process with reference to some aspects that can be considered crucial to achieve a greater efficiency, accuracy and repeatability of the inspection process. Although we are still far from making this process completely automatic, several researches were made in recent years to support and speed up the geometric error evaluation and to make it less human-intensive. The paper, in particular, surveys: (1) models of specification developed for an integrated approach to tolerancing; (2) state of the art of Computer-Aided Inspection Planning (CAIP); (3) research efforts recently made for limiting or eliminating the human contribution during the data processing aimed at geometric error evaluation. Possible future perspectives of the research on the automation of geometric verification process are finally described

    The integration of morphological design and topology optimization to enhance the visual quality of electricity pylons

    Get PDF
    Purpose: This paper aims to enhance the visual quality of artificial above-ground structures, like pylons, masts, and towers of infrastructures and facilities, through a systematic design method for their morphological and structural optimization. Design/methodology/approach: The method achieves the functional and aesthetic goals based on the application of computer-aided tools. In particular, this is achieved according to three key steps: • Morphological development of landscape-related symbolism, environment, or culture and social needs. • Topology optimization of the design concept to reduce the structural weight and its visual impact. • Engineering of the resulting optimized structure. Practical implications: As a case study, the method is used for designing electricity pylons for the coastal territory of a Mediterranean European country, such as Italy. Citizens were involved during the identification phase of a symbolic shape for the concept development and during the final assessment phase. Research limitations/implications: The engineering phase has been performed by assembling standard lattice components with welded connections. Even if the use of this truss-like structure should lead to a minimum cost, the developed structure employs an additional 15%–20% of trusses and sheet metal covers the final cost is higher than a standard lattice pylon. Findings: The result is a structure with enhanced visual quality according to the international guidelines and fully complying with mandatory and functional requirements, such as regulatory and industrial feasibility, as well as those arising from social components. Originality/value: The method shows its potential in defining a custom design for lightweight structures with enhanced visual quality regarding the critical situation discussed here. The method considers both the subjective perception of citizens and their priorities and the landscape where the structures will be installed

    Occurrence, antimicrobial susceptibility, and pathogenic factors of Pseudomonas aeruginosa in canine clinical samples

    Get PDF
    Background and Aim: Pseudomonas aeruginosa is a relevant opportunistic and difficult to treat pathogen due to its widespread environmental diffusion, intrinsic resistance to many classes of antimicrobials, high ability to acquire additional resistance mechanisms, and wide range of pathogenic factors. The present study aimed to investigate the prevalence of P. aeruginosa in canine clinical samples, the antimicrobial susceptibility against antipseudomonal antibiotics, and the presence of extracellular pathogenic factors of the isolates, as well as their ability to produce biofilm. Materials and Methods: Overall, 300 clinical specimens from dogs with pyoderma or abscesses (n=58), otitis (n=59), and suspected bladder infection (n=183) were analyzed by standard bacteriological methods. P. aeruginosa isolates were tested for their antimicrobial susceptibility by disk and gradient diffusion methods to determine the minimum inhibitory concentrations. The ability of the isolates to produce biofilm was investigated by a microtiter plate assay, while virulence genes coding for elastase (lasB), exotoxin A (toxA), alkaline protease (aprA), hemolytic phospholipase C (plcH), and exoenzyme S (ExoS) were detected by polymerase chain reaction method. Results: A total of 24 isolates of P. aeruginosa were found in clinical specimens (urine n=3, skin/soft tissue n=6, and ear canal n=15). No resistance was found to ceftazidime, gentamicin, aztreonam, and imipenem (IMI), while low levels of resistance were found to enrofloxacin (ENR) (4.2%) and piperacillin-tazobactam (8.3%). However, 41.7% and 29.2% of the isolates showed intermediate susceptibility to ENR and IMI, respectively. Disk and gradient diffusion methods showed high concordance. The majority of the isolates revealed a weak (33.3%) or intermediate (45.8%) ability to form biofilm, while the strong biofilm producers (20.8%) derived exclusively from the ear canal samples. All isolates (100%) were positive for lasB, aprA, and plcH genes, while exoS and toxA were amplified in 21 (87.5%) and 22 (91.7%) isolates, respectively. Conclusion: In the present study, P. aeruginosa isolates from canine clinical samples were characterized by low levels of antimicrobial resistance against antipseudomonal drugs. However, the high presence of isolates with intermediate susceptibility for some categories of antibiotics, including carbapenems which are not authorized for veterinary use, could represent an early warning signal. Moreover, the presence of isolates with strong ability to produce biofilm represents a challenge for the interpretation of the antimicrobial susceptibility profile. In addition, the high prevalence of the extracellular pathogenic factors was indicative of the potential virulence of the isolates

    Application of a statistical and linear response theory to multi-ion Na+ conduction in NaChBac

    Get PDF
    Biological ion channels are fundamental to maintaining life. In this manuscript we apply our recently developed statistical and linear response theory to investigate Na+ conduction through the prokaryotic Na+ channel NaChBac. This work is extended theoretically by the derivation of ionic conductivity and current in an electrochemical gradient, thus enabling us to compare to a range of whole-cell data sets performed on this channel. Furthermore, we also compare the magnitudes of the currents and populations at each binding site to previously published single-channel recordings and molecular dynamics simulations respectively. In doing so, we find excellent agreement between theory and data, with predicted energy barriers at each of the four binding sites of ∼4,2.9,3.6, and 4kT

    Physics of selective conduction and point mutation in biological ion channels

    Get PDF
    We introduce a statistical and linear response theory of selective conduction in biological ion channels with multiple binding sites and possible point mutation. We derive an effective grand canonical ensemble and generalised Einstein relations for the selectivity filter, assuming strongly coordinated ionic motion, and allowing for ionic Coulomb blockade. The theory agrees well with data from the KcsA K+ channel and a mutant. We show that the Eisenman relations for thermodynamic selectivity follow from the condition for fast conduction and find that maximum conduction requires the binding sites to be nearly identica

    Exploring the pore charge dependence of K+ and Cl- permeation across a graphene monolayer:a Molecular Dynamics study

    Get PDF
    Selective permeation through graphene nanopores is attracting increasing interest as an efficient and cost-effective technique for water desalination and purification. In this work, using umbrella sampling and molecular dynamics simulations with constant electric field, we analyze the influence of pore charge on potassium and chloride ion permeation. As pore charge is increased, the barrier of the potential of mean force (PMF) gradually decreases until it turns into a well split in two subminima. While in the case of K+ this pattern can be explained as an increasing electrostatic compensation of the desolvation cost, in the case of Cl􀀀 the pattern can be attributed to the accumulation of a concentration polarization layer of potassium ions screening pore charge. Th analysis of potassium PMFs in terms of forces revealed a conflicting influence on permeation of van der Waals and electrostatic forces that both undergo an inversion of their direction as pore charge is increased. Even if the most important transition involves the interplay between the electrostatic forces exerted by graphene and water, the simulations also revealed an important role of the changing distribution of potassium and chloride ions. The influence of pore charge on the orientation of water molecules was also found to affect the van der Waals forces they exert on potassium

    Statistical theory of mixed-valence selectivity in biological ion channels

    Get PDF
    In this article we apply our multi-component statistical and linear response theory to the process of mixed-valence ionic transport in a biological sodium ion channel. We analyse the free energy spectra, and statistical fluctuations (which are proportional to the conductivity) to investigate conditions and optimal parameters required for selectivity

    Origin and control of ionic hydration patterns in nanopores

    Get PDF
    In order to permeate a nanopore, an ion must overcome a dehydration energy barrier caused by the redistribution of surrounding water molecules. The redistribution is inhomogeneous, anisotropic and strongly position-dependent, resulting in complex patterns that are routinely observed in molecular dynamics simulations. Here, we study the physical origin of these patterns and of how they can be predicted and controlled. We introduce an analytic model able to predict the patterns in a graphene nanopore in terms of experimentally accessible radial distribution functions, giving results that agree well with molecular dynamics simulations. The patterns are attributable to a complex interplay of ionic hydration shells with water layers adjacent to the graphene membrane and with the hydration cloud of the nanopore rim atoms, and we discuss ways of controlling them. Our findings pave the way to designing required transport properties into nanoionic devices by optimising the structure of the hydration patterns

    Field-dependent dehydration and optimal ionic escape paths for C2N membranes

    Get PDF
    Most analytic theories describing electrostatically-driven ion transport through water-filled nanopores assume that the corresponding permeation barriers are bias-independent. While this assumption may hold for sufficiently wide pores under infinitely small bias, transport through sub-nm pores under finite bias is difficult to interpret analytically. Given recent advances in sub-nm pore fabrication and the rapid progress in detailed computer simulations, it is important to identify and understand the specific field-induced phenomena arising during ion transport. Here we consider an atomistic model of electrostatically-driven ion permeation through subnanoporous C2N membranes. We analyse probability distributions of ionic escape trajectories and show that the optimal escape path switches between two different configurations, depending on bias magnitude. We identify two distinct mechanisms contributing to field-induced changes in transport-opposing barriers: a weak one arising from field-induced ion dehydration and a strong one due to the field-induced asymmetry of the hydration shells. The simulated current-voltage characteristics are compared with the solution of the 1D Nernst-Planck model. Finally, we show that the deviation of simulated currents from analytic estimates for large fields is consistent with the field-induced barriers and the observed changes in the optimal ion escape path

    Theory and Experiments on Multi-Ion Permeation and Selectivity in the NaChBac Ion Channel

    Get PDF
    The highly selective permeation of ions through biological ion channels is an unsolved problem of noise and fluctuations. In this paper, we motivate and introduce a non-equilibrium and self-consistent multi-species kinetic model, with the express aims of comparing with experimental recordings of current versus voltage and concentration and extracting important permeation parameters. For self-consistency, the behavior of the model at the two-state, i.e., selective limit in linear response, must agree with recent results derived from an equilibrium statistical theory. The kinetic model provides a good fit to data, including the key result of an anomalous mole fraction effect
    • …
    corecore