487 research outputs found

    Synthesis and characterization of layered double hydroxides as materials for electrocatalytic applications

    Get PDF
    Layered double hydroxides (LDHs) are anionic clays which have found applications in a wide range of fields, including electrochemistry. In such a case, to display good performances they should possess electrical conductivity which can be ensured by the presence of metals able to give reversible redox reactions in a proper potential window. The metal centers can act as redox mediators to catalyze reactions for which the required overpotential is too high, and this is a key aspect for the development of processes and devices where the control of charge transfer reactions plays an important role. In order to act as redox mediator, a material can be present in solution or supported on a conductive support. The most commonly used methods to synthesize LDHs, referring both to bulk synthesis and in situ growth methods, which allow for the direct modification of conductive supports, are here summarized. In addition, the most widely used techniques to characterize the LDHs structure and morphology are also reported, since their electrochemical performance is strictly related to these features. Finally, some electrocatalytic applications of LDHs, when synthesized as nanomaterials, are discussed considering those related to sensing, oxygen evolution reaction, and other energy issues

    Delay Management in Public Transportation: Service Regularity Issues and Crew Re-scheduling

    Get PDF
    In this paper, we propose a decision support tool to assist a local public transportation company in tackling service delays and small disruptions. We discuss different ways to assess and improve the regularity of the service, and we propose a simulation based optimization system that can be effectively used in a real-time environment taking into account both vehicle and driver shifts. In particular, we describe a tabu-search procedure for the online vehicle scheduling optimizing the regularity of the service and a column generation approach for the consequential crew re-scheduling minimizing the driver extra-time. As a case study, we analyze the management of urban surface lines of Azienda Trasporti Milanese (ATM) of Milan. In the last part of the paper we report a detailed analysis of the experimental phase showing the effectiveness of the proposed approach

    Textile chemical sensors based on conductive polymers for the analysis of sweat

    Get PDF
    Wearable textile chemical sensors are promising devices due to the potential applications in medicine, sports activities and occupational safety and health. Reaching the maturity required for commercialization is a technology challenge that mainly involves material science because these sensors should be adapted to flexible and light-weight substrates to preserve the comfort of the wearer. Conductive polymers (CPs) are a fascinating solution to meet this demand, as they exhibit the mechanical properties of polymers, with an electrical conductivity typical of semiconductors. Moreover, their biocompatibility makes them promising candidates for effectively interfacing the human body. In particular, sweat analysis is very attractive to wearable technologies as perspiration is a naturally occurring process and sweat can be sampled non-invasively and continuously over time. This review discusses the role of CPs in the development of textile electrochemical sensors specifically designed for real-time sweat monitoring and the main challenges related to this topic

    Organic Electrochemical Transistors as Versatile Analytical Potentiometric Sensors

    Get PDF
    Potentiometric transduction is an important tool of analytical chemistry to record chemical signals, but some constraints in the miniaturization and low-cost fabrication of the reference electrode are a bottleneck in the realization of more-advanced devices such as wearable and lab-on-a-chip sensors. Here, an organic electrochemical transistor (OECT) has been designed with an alternative architecture that allows to record the potentiometric signals of gate electrodes, which have been chemically modified to obtain Ag/AgnX interfaces (X = Cl−, Br−, I−, and S2−), without the use of a reference electrode. When the OECT is immersed in a sample solution, it reaches an equilibrium state, because PEDOT:PSS exchanges charges with the electrolyte until its Fermi level is aligned to the one of Ag/AgnX. The latter is controlled by Xn− concentration in the solution. As a consequence, in this spontaneous process, the conductivity of PEDOT:PSS changes with the electrochemical potential of the modified gate electrode without any external bias. The sensor works by applying only a fixed drain current or drain voltage and thus the OECT sensor operates with just two terminals. It is also demonstrated that, in this configuration, gate potential values extracted from the drain current are in good agreement with the ones measured with respect to a reference electrode being perfectly correlated (linear slope equal to 1.00 ± 0.03). In the case of the sulfide anion, the OECT performance overcomes the limit represented by the Nernst equation, with a sensitivity of 0.52 V decade−1. The presented results suggest that OECTs could be a viable option to fabricate advanced sensors based on potentiometric transduction

    Aseismic deformation associated with an earthquake swarm in the northern Apennines (Italy)

    Get PDF
    Analyzing the displacement time series from continuous GPS (cGPS) with an Independent Component Analysis, we detect a transient deformation signal that correlates both in space and time with a seismic swarm activity (maximum M_w=3.69 ± 0.09) occurred in the hanging wall of the Altotiberina normal fault (Northern Apennines, Italy) in 2013–2014. The geodetic transient lasted ∼6 months and produced a NW-SE trending extension of ∼5.3 mm, consistent with the regional tectonic regime. The seismicity and the geodetic signal are consistent with slip on two splay faults in the Altotiberina fault (ATF) hanging wall. Comparing the seismic moment associated with the geodetic transient and the seismic events, we observe that seismicity accounts for only a fraction of the measured geodetic deformation. The combined seismic and aseismic slip decreased the Coulomb stress on the locked shallow portion of the ATF, while the transition region to the creeping section has been loaded

    Organocatalytic Stereoselective α-Formylation of Ketones

    Get PDF
    We have described the first organocatalytic stereoselective formylation of ketones accomplished by the use of N-methybenzothiazolylium iodide. The benzothiazolium salt, generally used as a masked formyl group or as precursor of carbenes,[31] is quite electrophilic and react with enamines formed in situ. Both moderate yield and high stereoselectivity were obtained with different ketones

    Selective detection of liposoluble vitamins using an organic electrochemical transistor

    Get PDF
    Accurate quantification of vitamins content is essential in food analysis, with direct impact on the quality of our diet and, therefore, on our health. Current research interest is devoted to the design of robust and versatile devices able to perform real-time analyses that do not strictly rely on laboratory facilities. Here, we report the first organic electrochemical transistor (OECT) based sensor working in organic environment for the detection of a fat-soluble vitamin (Vitamin A). The OECT behaviour in organic solvents was thoroughly characterized and its structure was optimised allowing both potentiostatic and potentiodynamic detections. On one hand, the potentiostatic approach provided a gain of 100 and the detection limit was as low as 115 nM, but it did not address selectivity issues. On the other hand, the potentiodynamic approach showed a higher detection limit, but allowed the selective detection of Vitamin A in the presence of & alpha;-Tocopherol. Analyses of randomized solutions revealed that a pre-calibrated sensor can estimate Vitamin A concentration with a 3% error. Moreover, the robustness of our sensor was demonstrated by analysing commercial food fortifiers without any sample pretreatment

    A wearable electrochemical gas sensor for ammonia detection

    Get PDF
    The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this study is the development of a wearable gas sensor for the detection of NH3 at room temperature based on the organic semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT), electrochemically deposited iridium oxide particles, and a hydrogel film. The hydrogel composition was finely optimised to obtain self-healing properties, as well as the desired porosity, adhesion to the substrate, and stability in humidity variations. Its chemical structure and morphology were characterised by infrared spectroscopy and scanning electron microscopy, respectively, and were found to play a key role in the transduction process and in the achievement of a reversible and selective response. The sensing properties rely on a potentiometric-like mechanism that significantly differs from most of the state-of-the-art NH3 gas sensors and provides superior robustness to the final device. Thanks to the reliability of the analytical response, the simple two-terminal configuration and the low power consumption, the PEDOT:PSS/IrOx Ps/hydrogel sensor was realised on a flexible plastic foil and successfully tested in a wearable configuration with wireless connectivity to a smartphone. The wearable sensor showed stability to mechanical deformations and good analytical performances, with a sensitivity of 60 ± 8 µA decade−1 in a wide concentration range (17–7899 ppm), which includes the safety limits set by law for NH3 exposure
    • …
    corecore