133 research outputs found

    Geometrical dependence of decoherence by electronic interactions in a GaAs/GaAlAs square network

    Full text link
    We investigate weak localization in metallic networks etched in a two dimensional electron gas between 2525\:mK and 750750\:mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T0.3T\gtrsim0.3\:K we find \Lphi^\mathrm{env}\propto{T}^{-1/3} for the envelope, and \Lphi^\mathrm{osc}\propto{T}^{-1/2} for the oscillations, in agreement with the prediction for a single ring \cite{LudMir04,TexMon05}. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.Comment: LaTeX, 5 pages, 4 eps figure

    Magnetic Anisotropy Variations and Non-Equilibrium Tunneling in a Cobalt Nanoparticle

    Full text link
    We present detailed measurements of the discrete electron-tunneling level spectrum within nanometer-scale cobalt particles as a function of magnetic field and gate voltage, in this way probing individual quantum many-body eigenstates inside ferromagnetic samples. Variations among the observed levels indicate that different quantum states within one particle are subject to different magnetic anisotropy energies. Gate-voltage studies demonstrate that the low-energy tunneling spectrum is affected dramatically by the presence of non-equilibrium spin excitations

    Contactless photoconductivity measurements on (Si) nanowires

    Full text link
    Conducting nanowires possess remarkable physical properties unattainable in bulk materials. However our understanding of their transport properties is limited by the difficulty of connecting them electrically. In this Letter we investigate phototransport in both bulk silicon and silicon nanowires using a superconducting multimode resonator operating at frequencies between 0.3 and 3 GHz. We find that whereas the bulk Si response is mainly dissipative, the nanowires exhibit a large dielectric polarizability. This technique is contactless and can be applied to many other semiconducting nanowires and molecules. Our approach also allows to investigate the coupling of electron transport to surface acoustic waves in bulk Si and to electro-mechanical resonances in the nanowires

    Analytical calculation of the excess current in the OTBK theory

    Full text link
    We present an analytical derivation of the excess current in Josephson junctions within the Octavio-Tinkham-Blonder-Klapwijk theory for both symmetric and asymmetric barrier strengths. We confirm the result found numerically by Flensberg et al. for equal barriers [Phys. Rev. B 38, 8707 (1988)], including the prediction of negative excess current for low transparencies, and we generalize it for differing barriers. Our analytical formulae provide for convenient fitting of experimental data, also in the less studied, but practically relevant case of the barrier asymmetry.Comment: 13 pages, 3 figures, submitted to Superconductor Science and Technolog

    A Model for Ferromagnetic Nanograins with Discrete Electronic States

    Full text link
    We propose a simple phenomenological model for an ultrasmall ferromagnetic grain, formulated in terms of the grain's discrete energy levels. We compare the model's predictions with recent measurements of the discrete tunneling spectrum through such a grain. The model can qualitatively account for the observed features if we assume (i) that the anisotropy energy varies among different eigenstates of one grain, and (ii) that nonequilibrium spin accumulation occurs.Comment: 4 pages, 2 figure

    Bubble dynamics in DNA

    Full text link
    The formation of local denaturation zones (bubbles) in double-stranded DNA is an important example for conformational changes of biological macromolecules. We study the dynamics of bubble formation in terms of a Fokker-Planck equation for the probability density to find a bubble of size n base pairs at time t, on the basis of the free energy in the Poland-Scheraga model. Characteristic bubble closing and opening times can be determined from the corresponding first passage time problem, and are sensitive to the specific parameters entering the model. A multistate unzipping model with constant rates recently applied to DNA breathing dynamics [G. Altan-Bonnet et al, Phys. Rev. Lett. 90, 138101 (2003)] emerges as a limiting case.Comment: 9 pages, 2 figure

    Textures and Newtonian Gravity

    Get PDF
    Newtonian theory is used to study the gravitational effects of a texture, in particular the formation of massive structures.Comment: 4 pages, 4 ps figures, REVTEX, accepted for publication in PR

    A new topological aspect of the arbitrary dimensional topological defects

    Full text link
    We present a new generalized topological current in terms of the order parameter field ϕ\vec \phi to describe the arbitrary dimensional topological defects. By virtue of the % \phi-mapping method, we show that the topological defects are generated from the zero points of the order parameter field ϕ\vec \phi, and the topological charges of these topological defects are topological quantized in terms of the Hopf indices and Brouwer degrees of ϕ\phi-mapping under the condition that the Jacobian % J(\frac \phi v)\neq 0. When J(ϕv)=0J(\frac \phi v)=0, it is shown that there exist the crucial case of branch process. Based on the implicit function theorem and the Taylor expansion, we detail the bifurcation of generalized topological current and find different directions of the bifurcation. The arbitrary dimensional topological defects are found splitting or merging at the degenerate point of field function ϕ\vec \phi but the total charge of the topological defects is still unchanged.Comment: 24 pages, 10 figures, Revte

    Harnessing nuclear spin polarization fluctuations in a semiconductor nanowire

    Full text link
    Soon after the first measurements of nuclear magnetic resonance (NMR) in a condensed matter system, Bloch predicted the presence of statistical fluctuations proportional to 1/N1/\sqrt{N} in the polarization of an ensemble of NN spins. First observed by Sleator et al., so-called "spin noise" has recently emerged as a critical ingredient in nanometer-scale magnetic resonance imaging (nanoMRI). This prominence is a direct result of MRI resolution improving to better than 100 nm^3, a size-scale in which statistical spin fluctuations begin to dominate the polarization dynamics. We demonstrate a technique that creates spin order in nanometer-scale ensembles of nuclear spins by harnessing these fluctuations to produce polarizations both larger and narrower than the natural thermal distribution. We focus on ensembles containing ~10^6 phosphorus and hydrogen spins associated with single InP and GaP nanowires (NWs) and their hydrogen-containing adsorbate layers. We monitor, control, and capture fluctuations in the ensemble's spin polarization in real-time and store them for extended periods. This selective capture of large polarization fluctuations may provide a route for enhancing the weak magnetic signals produced by nanometer-scale volumes of nuclear spins. The scheme may also prove useful for initializing the nuclear hyperfine field of electron spin qubits in the solid-state.Comment: 18 pages, 5 figure

    Transport and elastic scattering times as probes of the nature of impurity scattering in single and bilayer graphene

    Full text link
    Both transport τtr\tau_{tr} and elastic scattering times τe\tau_{e} are experimentally determined from the carrier density dependence of the magnetoconductance of monolayer and bilayer graphene. Both times and their dependences in carrier density are found to be very different in the monolayer and the bilayer. However their ratio τtr/τe\tau_{tr}/\tau_{e} is found to be of the order of 1.51.5 in both systems and independent of the carrier density. These measurements give insight on the nature (neutral or charged) and spatial extent of the scattering centers. Comparison with theoretical predictions yields that the main scattering mechanism in our graphene samples could be due to strong scatterers of short range, inducing resonant scattering, a likely candidate being vacancies
    corecore