105 research outputs found

    Fresco Thermograph IC Inspection by Convective Heating Technique

    Full text link
    Various Thermal/Infrared Non Destructive Testing techniques are gaining interest expanding the number of applications. The non-contact nature and the increased reliability of findings make this method particularly interesting for the works of art NDE. This work is devoted to the frescoes inspection for the sizing of detached plaster areas. Air filled voids in between the coloured plaster and the supporting wall are well identified due to the increased thermal resistance. Defects are evaluated from the evolution in time of the surface temperature detected by an IR camera in transient thermal regime. The inspection of large surfaces was recently and successfully applied by means of a lateral heating [1–2]. An advantage of this procedure is the reduced inspection time. This aspect is extremely important when the thermal diffusivity of the material is low, so that a long time is needed for the thermal signal appearance.</p

    Automatic Procedure for Thermal NDE of Delaminations in CFRP by Using Neural Networks

    Get PDF
    This work is a first step in detecting and characterizing defects in an automatic way by using artificial intelligence. Transient thermal NDE by IR thermography is the method used for such a purpose. Data are processed by Neural Networks

    Fermented soy-derived bioactive peptides selected by a molecular docking approach show antioxidant properties involving the keap1/nrf2 pathway

    Get PDF
    Bioactive peptides are a group of molecules with health beneficial properties, deriving from food matrices. They are protein fragments consisting of 2–20 amino acids that can be released by microbial fermentation, food processing and gastrointestinal digestion. Once hydrolyzed from their native proteins, they can have different functions including antioxidant activity, which is important for cell protection by oxidant agents. In this work, fermented soy products were digested in vitro in order to improve the release of bioactive peptides. These were extracted, purified and analyzed in vitro and in a cellular model to assess their antioxidant activity. Peptide sequences were identified by LC-MS/MS analysis and a molecular docking approach was used to predict their ability to interact with Keap1, one of the key proteins of the Keap1/Nrf2 pathway, the major system involved in redox regulation. Peptides showing a high score of interaction were selected and tested for their antioxidant properties in a cellular environment using the Caco-2 cell line and examined for their capability to defend cells against oxidative stress. Our results indicate that several of the selected peptides were indeed able to activate the Keap1/Nrf2 pathway with the consequent overexpression of antioxidant and phase II enzymes

    Exceptionally potent human monoclonal antibodies are effective for prophylaxis and therapy of tetanus in mice

    Get PDF
    Human monoclonal antibodies were used here to study the mechanism of neuron intoxication by tetanus neurotoxin and to evaluate them as a safe preventive and therapeutic substitute of hyperimmune sera for tetanus in mice. By screening memory B cells of immune donors, we selected two monoclonal antibodies specific for tetanus neurotoxin with exceptionally high neutralizing activities, which were extensively characterized both structurally and functionally. We found that these antibodies interfere with the binding and translocation of the neurotoxin into neurons by interacting with two epitopes, whose definition pinpoints crucial events in the cellular pathogenesis of tetanus. This information explains the unprecedented neutralization ability of these antibodies, which were found to be exceptionally potent in preventing experimental tetanus when injected in mice long before the neurotoxin. Moreover, their Fab derivatives neutralized tetanus neurotoxin in post-exposure experiments, suggesting their potential therapeutic use via intrathecal injection. As such, these human monoclonal antibodies, as well as their Fab derivatives, meet all requirements for being considered for prophylaxis and therapy of human tetanus and are ready for clinical trials

    Pea PSII-LHCII supercomplexes form pairs by making connections across the stromal gap

    Get PDF
    In higher plant thylakoids, the heterogeneous distribution of photosynthetic protein complexes is a determinant for the formation of grana, stacks of membrane discs that are densely populated with Photosystem II (PSII) and its light harvesting complex (LHCII). PSII associates with LHCII to form the PSII-LHCII supercomplex, a crucial component for solar energy conversion. Here, we report a biochemical, structural and functional characterization of pairs of PSII-LHCII supercomplexes, which were isolated under physiologically-relevant cation concentrations. Using single-particle cryo-electron microscopy, we determined the three-dimensional structure of paired C2S2M PSII-LHCII supercomplexes at 14 angstrom resolution. The two supercomplexes interact on their stromal sides through a specific overlap between apposing LHCII trimers and via physical connections that span the stromal gap, one of which is likely formed by interactions between the N-terminal loops of two Lhcb4 monomeric LHCII subunits. Fast chlorophyll fluorescence induction analysis showed that paired PSII-LHCII supercomplexes are energetically coupled. Molecular dynamics simulations revealed that additional flexible physical connections may form between the apposing LHCII trimers of paired PSII-LHCII supercomplexes in appressed thylakoid membranes. Our findings provide new insights into how interactions between pairs of PSII-LHCII supercomplexes can link adjacent thylakoids to mediate the stacking of grana membranes

    Quantitative Analysis Procedure for Building Materials in Historic Buildings by Applying Infrared Thermography

    Full text link
    [EN] Historic buildings have a great cultural and architectural value. It is necessary to analyze their state of conservation, but sometimes it is difficult to perform laboratory tests without damaging this heritage. In the field of architecture, infrared thermography is usually used to provide descriptive information about the surface temperature of building materials. This current research presents a methodology widely applicable to historic buildings. As an example of application, the study is focused in the Seminary-School of Corpus Christi of Valencia (Spain), a very outstanding building from the 16th Century. This research presents an analytical study to be able to differentiate the temperature distribution of all pixels of a thermographic image. Thermal images are a matrix of data and their study helps us in decision-making based on objective data.Lerma Elvira, C.; Mas Tomas, MDLA.; Gil Benso, E.; Vercher Sanchis, JM.; Torner-Feltrer, MEM. (2018). Quantitative Analysis Procedure for Building Materials in Historic Buildings by Applying Infrared Thermography. Russian Journal of Nondestructive Testing. 54(8):601-609. https://doi.org/10.1134/S1061830918080065S601609548Avdelidis, N.P. and Moropoulou, A., Applications of infrared thermography for the investigation of historic structures, J. Cult. Heritage, 2004, no. 5, pp. 119–127. doi 10.1016/j.culher.2003.07.002Barreira, E. and Freitas, V., Evaluation of building materials using infrared thermography, Constr. Build. Mater., 2007, vol. 21, pp. 218–224. doi 10.1016/j.conbuildmat.2005.06.049Bauer, E., Pavón, E., Barreira, E., and Kraus, E., Analysis of building façade defects using infrared thermography: Laboratory studies, J. Build. Eng., 2016, no. 6, pp. 93–104. doi /doi 10.1016/j.jobe.2016.02.012Binda, L., Cardani, G., and Zanzi, L., Nondestructive testing evaluation of drying process in flooded full-scale masonry walls, J. Perform. Constr. Facil., 2010, pp. 473–483. doi 10.1061/(ASCE)CF.1943-5509.0000097Cañas, I., Martín, S., and González, I., Thermal-physical aspects of materials used for the construction of rural buildings in Soria (Spain), Construct. Build. Mater., 2005, vol. 19, pp. 197–211. doi 10.1016/j.conbuildmat. 2004.05.016Carlomagno, G.M., Maio, R., Fedi, M., Meola, C., Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys, J. Geophys. Eng., 2011, vol. 8, pp. 93–105. doi 10.1088/1742-2132/8/3/S09Cerdeira, F., Vázquez, ME, Collado, J., and Granada, E., Applicability of infrared thermography to the study of the behavior of Stone panels as building envelopes, Energy Build., 2011, vol. 43, pp. 1845–1851. doi 10.1016/j.enbuild.2011.03.029EN 13187:1998. Thermal performance of buildings. Qualitative detection of thermal irregularities in building envelopes. Infrared method (ISO 6781:1983 modified).Galarza Tortajada, M., La tapia valenciana: una técnica constructiva poco conocida, Proc. First Natl. Congr. Construct. Hist., Madrid, 1996.Grinzato, E., Bison, P.G., and Marinetti, S., Monitoring of ancient buildings by the thermal method, J. Cult. Heritage, 2002, vol. 3, pp. 21–29. doi 10.1016/S1296-2074(02)01159-7Ibarra-Castanedo C., Sfarra, S., Ambrosini, D., Paoletti, D., Bendada, A, and Maldague, X., Diagnostics of panel paintings using holographic interferometry and pulsed thermography, Quant. Infrared Thermogr. J., 2010, vol. 7, no. 1. doi 10.3166/qirt.7.85-114Lagüela, S., Martínez, J., Armesto, J., and Arias, P., Energy efficiency studies through 3D laser scanning and thermographic technologies, Energy Build., 2011, vol. 43, pp. 1216–1221. doi 10.1016/j.enbuild.2010.12.031Lerma, C., Mas, Á., Gil, E., and Galiana, M., An analytical procedure for the study of the documented construction process of the Seminary-School of Corpus Christi in Valencia (Spain), Inf. Constr., 2014, vol. 66 (533), e007. doi 10.3989/ic.12.117Lerma, C., Mas, A., Gil, E., Vercher, J., and Penalver, M.J., Pathology of building materials in historic buildings. Relationship between laboratory testing and infrared thermography, Mater. Constr., 2014, vol. 64 (313), e009. doi 10.3989/mc.2013.06612Lerma, J.L., Cabrelles, M., and Portalés, C., Multitemporal thermal analysis to detect moisture on a building façade, Construct. Build. Mater., 2011, vol. 25, pp. 2190–2197. doi 10.1016/j.conbuildmat.2010.10.007Madruga, F.J., Ibarra-Castanedo, C., Conde, O., López-Higuera, J.M., and Maldague, X., Infrared thermography processing based on higher-order statistics, NDT&E Int., 2010, vol. 43, pp. 661–666. doi 10.1016/j.ndteint.2010.07.002Meola, C., Infrared thermography of masonry structures, Infrared Phys. Technol., 2007, vol. 49, no. 3, pp. 228–33. doi 10.1016/j.infraredPosta, J., Dolejs, J., Non-destructive assessment of timber elements with an emphasis on radiometry., Intern. J. Arch. Herit., 2015, vol. 9, no.6.Válek, J., Kruschwitz, S., Wöstmann, J., Kind, T., Valach, J., Köpp, C., and Lesák, J., Nondestructive investigation of wet building material: Multimethodological approach, J. of performance of Constructed Facilities, pp. 462–472. doi 10.1061/(ASCE)CF.1943-5509.000005

    The feasibility of using electromagnetic waves in determining membrane failure through concrete

    Get PDF
    Concrete flat roof defects such as water leakage present a significant and common problem in large buildings, particularly in tropical countries, where rainfall is high. To monitor this condition, effective non-destructive test methods are required to detect problems at an early stage, especially hidden defects within the concrete roof, which are critical. This paper presents the potential use of electromagnetic (EM) waves for determining possible leakage of the concrete flat roof as a result of failure of the waterproof membrane layer. This study was assessed, experimentally by investigation of the propagation of EM waves through the roof and their interaction with water. Novel Microwave sensors described in the paper operate in the 6 GHz to 12 GHz frequency range using a Marconi 6200A microwave test set. A range of existing methods was reviewed and analysed. Results of experimental tests confirmed that microwaves could be used as an alternative non-destructive method for identifying water ingress caused by membrane failure into the concrete roof surface
    corecore