633 research outputs found

    Conifolds and Geometric Transitions

    Full text link
    Conifold geometries have recieved a lot of attention in string theory and string-inspired cosmology recently, in particular the Klebanov-Strassler background that is known as the "warped throat". It is our intention in this article to give a pedagogical explanation for the singularity resolution in this geometry and emphasise its connection to geometric transitions. The first part focuses on the gauge theory dual to the Klebanov-Strassler background, which we also explain from a T-dual intersecting branes scenario. We then make the connection to the Gopakumar-Vafa conjecture for open/closed string duality and summarise a series of papers verifying this model on the supergravity level. An appendix provides extensive background material about conifold geometries. We pay special attention to their complex structures and re-evaluate the supersymmetry conditions on the background flux in constructions with fractional D3-branes on the singular (Klebanov-Tseytlin) and resolved (Pando Zayas-Tseytlin) conifolds. We agree with earlier results that only the singular solution allows a supersymmetric flux, but point out the importance of using the correct complex structure to reach this conclusion.Comment: 37 pages, v3: accepted for publication in Reviews of Modern Physic

    A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving

    Get PDF
    There is increasing interest in connected and automated vehicles (CAVs), since their implementation will transform the nature of transportation and promote social and economic change. Transition toward cooperative driving still requires the understanding of some key questions to assess the performances of CAVs and human-driven vehicles on roundabouts and to properly balance road safety and traffic efficiency requirements. In this view, this paper proposes a simulation-based methodological framework aiming to assess the presence of increasing proportions of CAVs on roundabouts operating at a high-capacity utilization level. A roundabout was identified in Palermo City, Italy, and built in Aimsun (version 20) to describe the stepwise methodology. The CAV-based curves of capacity by entry mechanism were developed and then used as target capacities. To calibrate the model parameters, the capacity curves were compared with the capacity data simulated by Aimsun. The impact on the safety and performance efficiency of a lane dedicated to CAVs was also examined using surrogate measures of safety. The paper ends with highlighting a general improvement with CAVs on roundabouts, and with providing some insights to assess the advantages of the automated and connected driving technologies in transitioning to smarter mobilit

    N=1 effective potential from dual type-IIA D6/O6 orientifolds with general fluxes

    Get PDF
    We consider N=1 compactifications of the type-IIA theory on the T6/(Z2xZ2) orbifold and O6 orientifold, in the presence of D6-branes and general NSNS, RR and Scherk-Schwarz geometrical fluxes. Introducing a suitable dual formulation of the theory, we derive and solve the Bianchi identities, and show how certain combinations of fluxes can relax the constraints on D6-brane configurations coming from the cancellation of RR tadpoles. We then compute, via generalized dimensional reduction, the N=1, D=4 effective potential for the seven main moduli, and comment on the relation with truncated N=4 gaugings. As a byproduct, we obtain a general geometrical expression for the superpotential. We finally identify a family of fluxes, compatible with all Bianchi identities, that perturbatively stabilize all seven moduli in supersymmetric AdS4.Comment: 19 pages, no figures, JHEP3 LaTeX. Published versio

    Generalized structures of N=1 vacua

    Full text link
    We characterize N=1 vacua of type II theories in terms of generalized complex structure on the internal manifold M. The structure group of T(M) + T*(M) being SU(3) x SU(3) implies the existence of two pure spinors Phi_1 and Phi_2. The conditions for preserving N=1 supersymmetry turn out to be simple generalizations of equations that have appeared in the context of N=2 and topological strings. They are (d + H wedge) Phi_1=0 and (d + H wedge) Phi_2 = F_RR. The equation for the first pure spinor implies that the internal space is a twisted generalized Calabi-Yau manifold of a hybrid complex-symplectic type, while the RR-fields serve as an integrability defect for the second.Comment: 21 pages. v2, v3: minor changes and correction

    Towards Minkowski Vacua in Type II String Compactifications

    Get PDF
    We study the vacuum structure of compactifications of type II string theories on orientifolds with SU(3)xSU(3) structure. We argue that generalised geometry enables us to treat these non-geometric compactifications using a supergravity analysis in a way very similar to geometric compactifications. We find supersymmetric Minkowski vacua with all the moduli stabilised at weak string coupling and all the tadpole conditions satisfied. Generically the value of the moduli fields in the vacuum is parametrically controlled and can be taken to arbitrarily large values.Comment: 33 pages; v2 minor corrections, references added, version to appear in JHE

    Radiation-dominated area metric cosmology

    Full text link
    We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.Comment: 23 pages, no figures; references adde

    Supersymmetric AdS(4) compactifications of IIA supergravity

    Full text link
    We derive necessary and sufficient conditions for N=1 compactifications of (massive) IIA supergravity to AdS(4) in the language of SU(3) structures. We find new solutions characterized by constant dilaton and nonzero fluxes for all form fields. All fluxes are given in terms of the geometrical data of the internal compact space. The latter is constrained to belong to a special class of half-flat manifolds.Comment: 24 pages, references adde
    • 

    corecore