3,281 research outputs found

    Anticipatory nausea in cyclical vomiting

    Get PDF
    BACKGROUND: Cyclical Vomiting Syndrome (CVS) is characterised by discrete, unexplained episodes of intense nausea and vomiting, and mainly affects children and adolescents. Comprehending Cyclical Vomiting Syndrome requires awareness of the severity of nausea experienced by patients. As a subjective symptom, nausea is easily overlooked, yet is the most distressing symptom for patients and causes many behavioural changes during attacks. CASE PRESENTATION: This first-hand account of one patient's experience of Cyclical Vomiting Syndrome shows how severe nausea contributed to the development of anticipatory nausea and vomiting (ANV), a conditioned response frequently observed in chemotherapy patients. This conditioning apparently worsened the course of the patient's disease. Anticipatory nausea and vomiting has not previously been recognised in Cyclical Vomiting Syndrome, however predictors of its occurrence in oncology patients indicate that it could complicate many cases. CONCLUSION: We suggest a model whereby untreated severe and prolonged nausea provokes anxiety about further cyclical vomiting attacks. This anxiety facilitates conditioning, thus increasing the range of triggers in a self-perpetuating manner. Effective management of the nausea-anxiety feedback loop can reduce the likelihood of anticipatory nausea and vomiting developing in other patients

    Two-loop Corrections to the B to pi Form Factor from QCD Sum Rules on the Light-Cone and |V(ub)|

    Full text link
    We calculate the leading-twist O(alphas^2 beta0) corrections to the B to pi transition form factor f+(0) in light-cone sum rules. We find that, as expected, there is a cancellation between the O(alphas^2 beta0) corrections to fB f+(0) and the large corresponding corrections to fB, calculated in QCD sum rules. This suggests the insensitivity of the form factors calculated in the light-cone sum rules approach to this source of radiative corrections. We further obtain an improved determination of the CKM matrix element |V(ub)|, using latest results from BaBar and Belle for f+(0)|V(ub)|.Comment: 18 pages, 3 figure

    Seesaw Neutrino Signals at the Large Hadron Collider

    Full text link
    We discuss the scenario with gauge singlet fermions (right-handed neutrinos) accessible at the energy of the Large Hadron Collider. The singlet fermions generate tiny neutrino masses via the seesaw mechanism and also have sizable couplings to the standard-model particles. We demonstrate that these two facts, which are naively not satisfied simultaneously, are reconciled in the five-dimensional framework in various fashions, which make the seesaw mechanism observable. The collider signal of tri-lepton final states with transverse missing energy is investigated for two explicit examples of the observable seesaw, taking account of three types of neutrino mass spectrum and the constraint from lepton flavor violation. We find by showing the significance of signal discovery that the collider experiment has a potential to find signals of extra dimensions and the origin of small neutrino masses.Comment: 27 pages, 4 figure

    Fermion Masses in Emergent Electroweak Symmetry Breaking

    Full text link
    We consider the generation of fermion masses in an emergent model of electroweak symmetry breaking with composite W,ZW,Z gauge bosons. A universal bulk fermion profile in a warped extra dimension is used for all fermion flavors. Electroweak symmetry is broken at the UV (or Planck) scale where boundary mass terms are added to generate the fermion flavor structure. This leads to flavor-dependent nonuniversality in the gauge couplings. The effects are suppressed for the light fermion generations but are enhanced for the top quark where the ZttˉZt{\bar t} and WtbˉWt{\bar b} couplings can deviate at the 102010-20% level in the minimal setup. By the AdS/CFT correspondence our model implies that electroweak symmetry is not a fundamental gauge symmetry. Instead the Standard Model with massive fermions and W,ZW,Z gauge bosons is an effective chiral Lagrangian for some underlying confining strong dynamics at the TeV scale, where mass is generated without a Higgs mechanism.Comment: modified discussion in Sec 3.1, version published in JHE

    Mixed Mediation of Supersymmetry Breaking with Anomalous U(1) Gauge Symmetry

    Full text link
    Models with anomalous U(1) gauge symmetry contain various superfields which can have nonzero supersymmetry breaking auxiliary components providing the origin of soft terms in the visible sector, e.g. the U(1) vector superfield, the modulus or dilaton superfield implementing the Green-Schwarz anomaly cancellation mechanism, U(1)-charged but standard model singlet matter superfield required to cancel the Fayet-Iliopoulos term, and finally the supergravity multiplet. We examine the relative strength between these supersymmetry breaking components in a simple class of models, and find that various different mixed mediations of supersymmetry breaking, involving the modulus, gauge, anomaly and D-term mediations, can be realized depending upon the characteristics of D-flat directions and how those D-flat directions are stabilized with a vanishing cosmological constant. We identify two parameters which represent such properties and thus characterize how the various mediations are mixed. We also discuss the moduli stabilization and soft terms in a variant of KKLT scenario, in which the visible sector K\"ahler modulus is stabilized by the D-term potential of anomalous U(1) gauge symmetry.Comment: 30 pages, 5 figure

    The Light Stop Scenario from Gauge Mediation

    Full text link
    In this paper we embed the light stop scenario, a MSSM framework which explains the baryon asymmetry of the universe through a strong first order electroweak phase transition, in a top-down approach. The required low energy spectrum consists in the light SM-like Higgs, the right-handed stop, the gauginos and the Higgsinos while the remaining scalars are heavy. This spectrum is naturally driven by renormalization group evolution starting from a heavy scalar spectrum at high energies. The latter is obtained through a supersymmetry-breaking mix of gauge mediation, which provides the scalars masses by new gauge interactions, and gravity mediation, which generates gaugino and Higgsino masses. This supersymmetry breaking also explains the \mu\ and B_\mu\ parameters necessary for electroweak breaking and predicts small tri-linear mixing terms A_t in agreement with electroweak baryogenesis requirements. The minimal embedding predicts a Higgs mass around its experimental lower bound and by a small extension higher masses m_H\lesssim 127 GeV can be accommodated.Comment: 20 pages, 3 figures; v2: changes in the conventions; v3: more details on the Higgs mass prediction, version published in JHE

    Composite GUTs: models and expectations at the LHC

    Get PDF
    We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Higgs and the top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum numbers. We analyse the signatures of these composite partners at hadron colliders: distinctive final states contain multiple top and bottom quarks, either alone or accompanied by a heavy stable charged particle, or by missing transverse energy.Comment: 55 pages, 13 figures, final version to be published in JHE

    Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model

    Full text link
    We investigate signatures of the minimal supersymmetric inverse seesaw model at the large hadron collider (LHC) with three isolated leptons and large missing energy (3\ell + \mET or 2\ell + 1\tau + \mET, with \ell=e,\mu) in the final state. This signal has its origin in the decay of chargino-neutralino (\chpm1\ntrl2) pair, produced in pp collisions. The two body decays of the lighter chargino into a charged lepton and a singlet sneutrino has a characteristic decay pattern which is correlated with the observed large atmospheric neutrino mixing angle. This correlation is potentially observable at the LHC by looking at the ratios of cross sections of the trilepton + \mET channels in certain flavour specific modes. We show that even after considering possible leading standard model backgrounds these final states can lead to reasonable discovery significance at the LHC with both 7 TeV and 14 TeV center-of-mass energy.Comment: 28 pages, 9 .eps figures. 3 new figures and discussions on LHC observables added, minor modifications in text and in the abstract, 23 new references added, matches with the published version in JHE

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Spontaneous R-Parity Violation, A4A_4 Flavor Symmetry and Tribimaximal Mixing

    Full text link
    We explore the possibility of spontaneous R parity violation in the context of A4A_4 flavor symmetry. Our model contains SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet matter chiral superfields which are arranged as triplet of A4A_4 and as well as few additional Higgs chiral superfields which are singlet under MSSM gauge group and belong to triplet and singlet representation under the A4A_4 flavor symmetry. R parity is broken spontaneously by the vacuum expectation values of the different sneutrino fields and hence we have neutrino-neutralino as well as neutrino-MSSM gauge singlet higgsino mixings in our model, in addition to the standard model neutrino- gauge singlet neutrino, gaugino-higgsino and higgsino-higgsino mixings. Because all of these mixings we have an extended neutral fermion mass matrix. We explore the low energy neutrino mass matrix for our model and point out that with some specific constraints between the sneutrino vacuum expectation values as well as the MSSM gauge singlet Higgs vacuum expectation values, the low energy neutrino mass matrix will lead to a tribimaximal mixing matrix. We also analyze the potential minimization for our model and show that one can realize a higher vacuum expectation value of the SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y singlet sneutrino fields even when the other sneutrino vacuum expectation values are extremely small or even zero.Comment: 18 page
    corecore